
Chapter 12

Extreme Values of Functions

12.1 Continuity

12.1 Definition (Continuity at a point.) Let f be a real valued function
such that dom(f) ⊂ R. Let a ∈ dom(f). We say that f is continuous at a if
and only if

lim
x→a

f(x) = f(a).

Remark: According to this definition, in order for f to be continuous at a we
must have

a ∈ dom(f)

and
a is approachable from dom(f).

The second condition is often not included in the definition of continuity, so
this definition does not quite correspond to the usual definition.
Remark: The method we will usually use to show that a function f is not
continuous at a point a, is to find a sequence {xn} in dom(f) \ {a} such that
{xn} → a, but {f(xn} either diverges or converges to a value different from
f(a).

12.2 Definition (Continuity on a set.) Let f be a real valued function
such that domain(f) ⊂ R, and let S be a subset of domain(f). We say that
f is continuous on S if f is continuous at every point in S. We say that f is
continuous if f is continuous at every point of domain(f).
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12.3 Example (sin, cos, ln and power functions are continuous.) We
proved in lemma 11.17 that a function is continuous at every point at which
it is differentiable. (You should now check the proof of that lemma to see that
we did prove this.) Hence sin, cos, ln, and xn (for n ∈ Z) are all continuous
on their domains, and if r ∈ Q \ Z, then xr is continuous on R+.

12.4 Example. Let

f(x) =
{

0 if x ≤ 0
1 if x > 0.

−1 1

1

−1

Then f is not continuous at 0. For the sequence { 1

n
} converges to 0, but

{f(
1

n
)} = {1} → 1 6= f(0).

Our limit rules all give rise to theorems about continuous functions.

12.5 Theorem (Properties of continuous functions.) Let f, g be real
valued functions with dom(f) ⊂ R, dom(g) ⊂ R, and let c, a ∈ R. If f and
g are continuous at a and if a is approachable from dom(f) ∩ dom(g), then

f + g, f − g, fg, and cf are continuous at a. If in addition, g(a) 6= 0 then
f

g
is also continuous at a.

Proof: Suppose f and g are continuous at a, and a is approachable from
dom(f) ∩ dom(g). Then

lim
x→a

f(x) = f(a) and lim
x→a

g(x) = g(a).

By the sum rule for limits (theorem 10.15) it follows that

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x)

= f(a) + g(a) = (f + g)(a).
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Thus f + g is continuous at a. The proofs of the other parts of the theorem
are similar.

12.6 Example (An everywhere discontinuous function.) Let D be the
example of a non-integrable function defined in equation (8.37). Then D is
not continuous at any point of [0, 1]. Recall

D(x) =
{

1 if x ∈ S
0 if x 6= S

where S is a subset of [0, 1] such that every subinterval of [0, 1] of positive
length contains a point in S and a point not in S. Let x ∈ [0, 1].

Case 1. If x ∈ S we can find a sequence of points {tn} in [0, 1] \ S such that
{tn} → x. Then

{D(tn)} = {0} → 0 6= D(x)

so D is not continuous at x.

Case 2. If x 6∈ S we can find a sequence of points {sn} in S such that {sn} → x.
Then

{D(sn)} = {1} → 1 6= D(x)

so D is not continuous at x.

12.7 Example. Let

h(x) =
√

x for x ∈ R≥0.

I claim that h is continuous. We know that h is differentiable on R+, so
H is continuous at each point of R+. In example 10.13 we showed that
lim
x→0

h(x) = 0 = h(0) so h is also continuous at 0.

12.8 Example. Let

f(x) = −x2,

g(x) =
√

x.

Then f and g are both continuous functions. Now

(g ◦ f)(x) =
√
−x2

and hence g ◦f is not continuous. The domain of g ◦f contains just one point,
and that point is not approachable from dom(g ◦ f).
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12.9 Theorem (Continuity of compositions.) Let f, g be functions with
domains contained in R and let a ∈ R. Suppose that f is continuous at a
and g is continuous at f(a). Then g ◦ f is continuous at a, provided that a is
approachable from dom(g ◦ f).

Proof: Suppose f is continuous at a and g is continuous at f(a), and a is
approachable from dom(g ◦ f). Let {xn} be a sequence in dom(g ◦ f) \ {a}
such that {xn} → a. Then {f(xn)} → f(a) since f is continuous at a. Hence

{g
(
f(xn)

)
} → g

(
f(a)

)
since g is continuous at f(a); i.e.,

{(g ◦ f)(xn)} → (g ◦ f)(a).

Hence g ◦ f is continuous at a.

12.2 ∗A Nowhere Differentiable Continuous Func-

tion.

We will now give an example of a function f that is continuous at every point of
[0, 1] and differentiable at no point of [0, 1]. The first published example of such
a function appeared in 1874 and was due to Karl Weierstrass(1815-1897) [29,
page 976]. The example described below is due to Helga von Koch (1870-1924),
and is a slightly modified version of Koch’s snowflake. From the discussion in
section 2.6, it is not really clear what we would mean by the perimeter of a
snowflake, but it is pretty clear that whatever the perimeter might be, it is not
the graph of a function. However, a slight modification of Koch’s construction
yields an everywhere continuous but nowhere differentiable function.

We will construct a sequence {fn} of functions on [0, 1]. The graph of fn

will be a polygonal line with 4n−1 segments. We set

f1(x) = 0 for 0 ≤ x ≤ 1

so that the graph of f1 is the line segment from (0, 0) to (0, 1).
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Approximations to a nowhere differentiable function

f1

f2

f3

f7
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In general the graph of fn+1 is obtained from the graph of fn by replacing
each segment [ae] in the graph of fn by four segments [ab], [bc], [cd], and [de]
constructed according to the following three rules:

e

d

b

a

m

c

i) The points b and d trisect the segment [ae].

ii) The point c lies above the midpoint m of [ae].

iii) distance(m, c) =

√
3

2
distance(b,d).

The graphs of f2, f3, f4 and f7 are shown on page 260. It can be shown that
for each x ∈ [0, 1] the sequence {fn(x)} converges. Define f on [0, 1] by

f(x) = lim{fn(x)} for all x ∈ [0, 1].

It turns out that f is continuous on [0, 1] and differentiable nowhere on [0, 1].
A proof of this can be found in [31, page 168].

The function f provides us with an example of a continuous function that
is not piecewise monotonic over any interval.

12.3 Maxima and Minima

12.10 Definition (Maximum, minimum, extreme points.) Let A be
a set, let f : A → R and let a ∈ A. We say that f has a maximum at a if

f(a) ≥ f(x) for all x ∈ A,

and we say that f has a minimum at a if

f(a) ≤ f(x) for all x ∈ A.

Points a where f has a maximum or a minimum are called extreme points of f .
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b

a

f has a maximum at a and a minimum at b

12.11 Example. Let f : [0, 1] → R be defined by

f(x) =
{

x if 0 ≤ x < 1
0 if x = 1.

(12.12)

1

1

{y = f(x)}

Then f has a minimum at 0 and at 1, but f has no maximum. To see that f

has no maximum, observe that if a ∈ [0, 1) then
1 + a

2
∈ [0, 1) and

f(
1 + a

2
) =

1 + a

2
>

a + a

2
= a = f(a).

If g is the function whose graph is shown, then g has a maximum at a, and g
has minimums at b and c.

cb
a

{y = g(x)} g(b) = g(c)
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12.13 Assumption (Extreme value property.) If f is a continuous func-
tion on the interval [a, b], then f has a maximum and a minimum on [a, b].

The extreme value property is another assumption that is really a theorem,
(although the proof requires yet another assumption, namely completeness of
the real numbers.)

The following exercise shows that all of the hypotheses of the extreme value
property are necessary.

12.14 Exercise.

a) Give an example of a continuous function f on (0, 1) such that f has no
maximum on (0, 1).

b) Give an example of a bounded continuous function g on the closed in-
terval [0,∞), such that g has no maximum on [0,∞)

c) Give an example of a function h on [0, 1] such that h has no maximum
on [0, 1].

d) Give an example of a continuous function k on [0,∞) that has neither a
maximum nor a minimum on [0,∞), or else explain why no such function
exists.

12.15 Exercise.

a) Show that every continuous function from an interval [a, b] to R is
bounded. (Hint: Use the extreme value property,)

b) Is it true that every continuous function from an open interval (a, b) to
R is bounded?

c) Give an example of a function from [0, 1] to R that is not bounded.

12.16 Definition (Critical point, critical set.) Let f be a real valued
function such that dom(f) ⊂ R. A point a ∈ dom(f) is called a critical point
for f if f ′(a) = 0. The set of critical points for f is the critical set for f .

The points x in the critical set for f correspond to points
(
x, f(x)

)
where the

graph of f has a horizontal tangent.
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12.17 Theorem (Critical point theorem I.) Let f be a real valued func-
tion with dom(f) ⊂ R. Let a ∈ R. If f has a maximum (or a minimum) at
a, and f is differentiable at a, then f ′(a) = 0.

Proof: We will consider only the case where f has a maximum. Suppose f
has a maximum at a and f is differentiable at a. Then a is an interior point
of dom(f) so we can find sequences {pn} and {qn} in dom(f) \ {a} such that
{pn} → a, {qn} → a, pn > a for all n ∈ Z+, and qn < a for all n ∈ Z+.

nq a np

Since f has a maximum at a, we have f(pn)− f(a) ≤ 0 and f(qn)− f(a) ≤ 0
for all n. Hence

f(pn)− f(a)

pn − a
≤ 0 and

f(qn)− f(a)

qn − a
≥ 0 for all n.

Hence by the inequality theorem for limits,

f ′(a) = lim
{f(pn)− f(a)

pn − a

}
≤ 0 and f ′(a) = lim

{f(qn)− f(a)

qn − a

}
≥ 0.

It follows that f ′(a) = 0. |||

12.18 Definition (Local maximum and minimum.) Let f be a real
valued function whose domain is a subset of R. Let a ∈ dom(f). We say that
f has a local maximum at a if there is a positive number δ such that

f(a) ≥ f(x) for all x ∈ dom(f) ∩ (a− δ, a + δ),

and we say that f has a local minimum at a if there is a positive number δ
such that

f(a) ≤ f(x) for all x ∈ dom(f) ∩ (a− δ, a + δ).
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Sometimes we say that f has a global maximum at a to mean that f has
a maximum at a, when we want to emphasize that we do not mean local
maximum. If f has a local maximum or a local minimum at a we say f has a
local extreme point at a.

12.19 Theorem (Critical point theorem II.) Let f be a real valued func-
tion with dom(f) ⊂ R. Let a ∈ R. If f has a local maximum or minimum at
a, and f is differentiable at a, then f ′(a) = 0.

Proof: The proof is the same as the proof of theorem 12.17.

12.20 Examples. If f has a maximum at a, then f has a local maximum
at a.

The function g whose graph is shown in the figure has local maxima at
A, B, C, D, E, F and local minima at a, b, c, and d. It has a global maximum
at E, and it has no global minimum.

A Dc d ECBaF b

From the critical point theorem, it follows that to investigate the extreme
points of f , we should look at critical points, or at points where f is not
differentiable (including endpoints of domain f).

12.21 Example. Let f(x) = x3 − 3x for −2 ≤ x ≤ 2. Then f is differen-
tiable everywhere on dom(f) except at 2 and −2. Hence, any local extreme
points are critical points of f or are in {2,−2}. Now

f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x− 1)(x + 1).
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From this we see that the critical set for f is {−1, 1}. Since f is a continuous
function on a closed interval [−2, 2] we know that f has a maximum and a
minimum on [−2, 2]. Now

f(−2) = −2, f(−1) = 2, f(1) = −2, f(2) = 2.

Hence f has global maxima at −1 and 2, and f has global minima at −2 and
1. The graph of f is shown.

−2

2

−1

1

−2 2−1 1

{y = x
3 − 3x)}

12.22 Example. Let

f(x) =
1

1 + x2
.

Here dom(f) = R and clearly f(x) > 0 for all x. I can see by inspection that
f has a maximum at 0; i.e.,

f(x) =
1

1 + x2
≤ 1

1 + 0
= 1 = f(0) for all x ∈ R

I also see that f(−x) = f(x), and that f is strictly decreasing on R+

0 < x < t =⇒ x2 < t2 =⇒ 1 + x2 < 1 + t2 =⇒ 1

1 + x2
>

1

1 + t2

thus f has no local extreme points other than 0. Also f(x) is very small when
x is large. There is no point in calculating the critical points here because all
the information about the extreme points is apparent without the calculation.
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−2 2−1 1

1

{y =
1

1+x
2}

12.23 Exercise. Find and discuss all of the global and local extreme points
for the following functions. Say whether the extreme points are maxima or
minima, and whether they are global or local.

a) f(x) = x4 − x2 for −2 ≤ x ≤ 2.

b) g(x) = 4x3 − 3x4 for −2 ≤ x ≤ 2.

12.4 The Mean Value Theorem

12.24 Lemma (Rolle’s Theorem) Let a, b be real numbers with a < b and
let f : [a, b] → R be a function that is continuous on [a, b] and differentiable on
(a, b). Suppose that f(a) = f(b). Then there is a point c ∈ (a, b) such that
f ′(c) = 0.

Proof: By the extreme value property, f has a maximum at some point
A ∈ [a, b]. If A ∈ (a, b), then f ′(A) = 0 by the critical point theorem. Suppose
A ∈ {a, b}. By the extreme value property, f has a minimum at some point
B ∈ [a, b]. If B ∈ (a, b) then f ′(B) = 0 by the critical point theorem. If
B ∈ {a, b}, then we have {A,B} ⊂ {a, b} so f(A) = f(B) = f(a) = f(b).
Hence in this case the maximum value and the minimum value taken by f are
equal, so f(x) = f(a) for x ∈ [a, b] so f ′(x) = 0 for all x ∈ (a, b). |||

Rolle’s theorem is named after Michel Rolle (1652-1719). An English trans-
lation of Rolle’s original statement and proof of the theorem can be found in
[43, pages 253-260]. It takes a considerable effort to see any relation between
what Rolle says and what our form of Rolle’s theorem says.
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12.25 Theorem (Mean value theorem.) Let a, b be real numbers and
let f : [a, b] → R be a function that is continuous on [a, b] and differentiable

on (a, b). Then there is a point c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
; i.e.,

there is a point c where the slope of the tangent line is equal to the slope of the
line joining

(
a, f(a)

)
to

(
b, f(b)

)
.

Proof: The equation of the line joining
(
a, f(a)

)
to

(
b, f(a)

)
is

y = l(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

(a,f(a))

y=f(x)

a c

(b,f(b))

y=l(x)

y=F(x)

b

Let

F (x) = f(x)− l(x)

= f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Then F is continuous on [a, b] and differentiable on (a, b) and F (a) = F (b) = 0.
By Rolle’s theorem there is a point c ∈ (a, b) where F ′(c) = 0.

Now

F ′(x) = f ′(x)− f(b)− f(a)

b− a
,
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so

F ′(c) = 0 =⇒ f ′(c)− f(b)− f(a)

b− a
= 0

=⇒ f ′(c) =
f(b)− f(a)

b− a
. |||

12.26 Corollary. Let J be an interval in R and let f : J → R be a function
that is continuous on J and differentiable at the interior points of J . Then

f ′(x) = 0 for all x ∈ interior (J) =⇒ f is constant on J.

f ′(x) ≤ 0 for all x ∈ interior (J) =⇒ f is decreasing on J.

f ′(x) ≥ 0 for all x ∈ interior (J) =⇒ f is increasing on J.

f ′(x) < 0 for all x ∈ interior (J) =⇒ f is strictly decreasing on J.

f ′(x) > 0 for all x ∈ interior (J) =⇒ f is strictly increasing on J.

Proof: I will prove the second assertion. Suppose f ′(x) ≤ 0 for all x ∈ interior(J).
Let s, t be points in J with s < t. Then by the mean value theorem

f(t)− f(s) = f ′(c)(t− s) for some c ∈ (s, t).

Since f ′(c) ≤ 0 and (t − s) > 0, we have f(t) − f(s) = f ′(c)(t − s) ≤ 0; i.e.,
f(t) ≤ f(s). Thus f is decreasing on J. |||
12.27 Exercise. Prove the first assertion of the previous corollary; i.e.,

prove that if f is continuous on an interval J , and f ′(x) = 0 for all x ∈ interior(J),
then f is constant on J .

12.28 Definition (Antiderivative) Let f be a real valued function with
dom(f) ⊂ R. Let J be an interval such that J ⊂ dom(f). A function F is an
antiderivative for f on J if F is continuous on J and F ′(x) = f(x) for all x in
the interior of J .

12.29 Examples. Since
d

dx
(x3 + 4) = 3x2, we see that x3 + 4 is an an-

tiderivative for 3x2. Since

d

dx
(cos2(x)) = 2 cos(x)(− sin(x)) = −2 sin(x) cos(x),

and
d

dx
(− sin2(x)) = −2 · sin(x) cos(x)

we see that cos2 and − sin2 are both antiderivatives for −2 sin · cos.
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We will consider the problem of finding antiderivatives in chapter 17. Now
I just want to make the following observation:

12.30 Theorem (Antiderivative theorem.) Let f be a real valued func-
tion with dom(f) ⊂ R and let J be an interval with J ⊂ dom(f). If F and G
are two antiderivatives for f on J , then there is a number c ∈ R such that

F (x) = G(x) + c for all x ∈ J.

12.31 Exercise. Prove the antiderivative theorem.

12.32 Definition (Even and odd functions.) A subset S of R is called
symmetric if (x ∈ S =⇒ − x ∈ S). A function f is said to be even if dom(f)
is a symmetric subset of R and

f(x) = f(−x) for all x ∈ dom(f),

and f is said to be odd if dom(f) is a symmetric subset of R and

f(x) = −f(−x) for all x ∈ dom(f)

.

−x
xx−x

odd  functioneven  function

12.33 Example. If n ∈ Z+ and f(x) = xn, then f is even if n is even, and
f is odd if n is odd. Also cos is an even function and sin is an odd function,
while ln is neither even or odd.
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12.34 Example. If f is even, then V
(
graph(f)

)
= graph(f) where V is the

reflection about the vertical axis. If f is odd, then Rπ

(
graph(f)

)
= graph(f)

where Rπ is a rotation by π about the origin.

12.35 Exercise. Are there any functions that are both even and odd?

12.36 Exercise.

a) If f is an arbitrary even differentiable function, show that the derivative
of f is odd.

b) If g is an arbitrary odd differentiable function, show that the derivative
of g is even.


