
Chapter 11

Calculation of Derivatives

11.1 Derivatives of Some Special Functions

11.1 Theorem (Derivative of power functions.) Let r ∈ Q and let
f(x) = xr. Here

domain(f) =





R if r ∈ Z≥0

R \ {0} if r ∈ Z−

R≥0 if r ∈ Q+ \ Z
R+ if r ∈ Q− \ Z.

Let a be an interior point of domain(f). Then f is differentiable at a, and

f ′(a) = rar−1.

If r = 0 and a = 0 we interpret rar−1 to be 0.

Proof: First consider the case a 6= 0. For all x in domain(f) \ {a} we have

f(x)− f(a)

x− a
=

xr − ar

x− a
=

ar
(
(x

a
)r − 1

)

a
(
(x

a
)− 1

) = ar−1

(
(x

a
)r − 1

)

(x
a
− 1)

.

Let {xn} be a generic sequence in domain(f) \ {a} such that {xn} → a. Let

yn =
xn

a
. Then {yn} → 1 and hence by theorem 7.10 we have

{yr
n − 1

yn − 1

}
→ r

and hence {
f(xn)− f(a)

xn − a

}
=

{
yr

n − 1

yn − 1

}
· ar−1 → rar−1.
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This proves the theorem in the case a 6= 0. If a = 0 then r ∈ Z≥0 (since for
other values of r, 0 is not an interior point of domain(f)). In this case

f(x)− f(0)

x− 0
=

xr − 0r

x
=

{
0 if r = 0 (remember 00 = 1).
xr−1 if r 6= 0.

Hence

f ′(0) = lim
x→0

f(x)− f(0)

x
=





0 if r = 0,
1 if r = 1,
0 if r > 1.

Thus in all cases the formula f ′(x) = rxr−1 holds. |||
11.2 Corollary (Of the proof of theorem 11.1) For all r ∈ Q,

lim
x→1

xr − 1

x− 1
= r.

11.3 Theorem (Derivatives of sin and cos.) Let r ∈ R and let
f(x) = sin(rx), g(x) = cos(rx) for all x ∈ R. Then f and g are differentiable
on R, and for all x ∈ R

f ′(x) = r cos(rx), (11.4)

g′(x) = −r sin(rx). (11.5)

Proof: If r = 0 the result is clear, so we assume r 6= 0. For all x ∈ R and all
t ∈ R \ {x}, we have

sin(rt)− sin(rx)

t− x
=

2 cos
(

r(t+x)
2

)
sin

(
r(t−x)

2

)

t− x

= r cos
(r(t + x)

2

)
·
sin

(
r(t−x)

2

)
(

r(t−x)
2

) .

(Here I’ve used an identity from theorem 9.21.) Let {xn} be a generic sequence

in R \ {x} such that {xn} → x. Let yn =
r(xn + x)

2
and let zn =

r(xn − x)

2
.

Then {yn} → rx so by lemma 9.34 we have {cos(yn)} → cos(rx). Also

{zn} → 0, and zn ∈ R \ {0} for all n ∈ Z+, so by (9.38),
{sin(zn)

zn

}
→ 1.

Hence

{sin(rxn)− sin(rx)

xn − x

}
=

{
r cos(yn) · sin(zn)

zn

}
→ r cos(rx),
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and this proves formula (11.4). |||
The proof of (11.5) is similar.

11.6 Exercise. Prove that if g(x) = cos(rx), then g′(x) = −r sin(rx).

11.7 Theorem (Derivative of the logarithm.) The logarithm function
is differentiable on R+, and

ln′(x) =
1

x
for all x ∈ R+.

Proof: Let x ∈ R+, and let s ∈ R+ \ {x}. Then

ln(s)− ln(x)

s− x
=

1

s− x

∫ s

x

1

t
dt =

1

s− x
As

x

[1

t

]
.

Case 1: If s > x then As
x

[1

t

]
represents the area of the shaded region S in the

figure.

S
x

(x,
1

x
)

s

(s, 1

s
)

We have

B(x, s: 0,
1

s
) ⊂ S ⊂ B(x, s: 0,

1

x
)

so by monotonicity of area

s− x

s
≤ As

x

[1

t

]
≤ s− x

x
.

Thus
1

s
≤ 1

s− x

∫ s

x

1

t
dt ≤ 1

x
. (11.8)

Case 2. If s < x we can reverse the roles of s and x in equation (11.8) to get

1

x
≤ 1

x− s

∫ x

s

1

t
dt ≤ 1

s
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or
1

x
≤ 1

s− x

∫ s

x

1

t
dt ≤ 1

s
.

In both cases it follows that

0 ≤
∣∣∣ 1

s− x

∫ s

x

1

t
dt− 1

x

∣∣∣ ≤
∣∣∣1
s
− 1

x

∣∣∣.

Let {xn} be a generic sequence in R+ \ {x} such that {xn} → x. Then{ 1

xn

− 1

x

}
→ 0 , so by the squeezing rule

{
1

xn − x

∫ xn

x

1

t
dt− 1

x

}
→ 0,

i.e. {
ln(xn)− ln(x)

xn − x
− 1

x

}
→ 0.

Hence { ln(xn)− ln(x)

xn − x

}
→ 1

x
.

We have proved that ln′(x) =
1

x
. |||

11.9 Assumption (Localization rule for derivatives.) Let f, g be two
real valued functions. Suppose there is some ε ∈ R+ and a ∈ R such that

(a− ε, a + ε) ⊂ domain(f) ∩ domain(g)

and such that
f(x) = g(x) for all x ∈ (a− ε, a + ε).

If f is differentiable at a, then g is differentiable at a and g′(a) = f ′(a).

This is another assumption that is really a theorem, i.e. it can be proved.
Intuitively this assumption is very plausible. It says that if two functions
agree on an entire interval centered at a, then their graphs have the same
tangents at a.

11.10 Theorem (Derivative of absolute value.) Let f(x) = |x| for all

x ∈ R. Then f ′(x) =
x

|x| for all x ∈ R \ {0} and f ′(0) is not defined.



11.1. DERIVATIVES OF SOME SPECIAL FUNCTIONS 241

Proof: Since

f(x) =
{

x if x > 0,
−x if x < 0,

it follows from the localization theorem that

f ′(x) =

{
1 = x

|x| if x > 0,
−1 = x

|x| if x < 0.

To see that f is not differentable at 0, we want to show that

lim
t→0

f(t)− f(0)

t− 0
= lim

t→0

|t|
t

does not exist. Let xn =
(−1)n

n
. Then {xn} → 0, but

|xn|
xn

=

∣∣∣ (−1)n

n

∣∣∣
(−1)n

n

= (−1)n

and we know that lim{(−1)n} does not exist. Hence lim
f(t)− f(0)

t− 0
does not

exist, i.e., f is not differentiable at 0.

11.11 Definition (
d

dx
notation for derivatives.) An alternate notation

for representing derivatives is:

d

dx
f(x) = f ′(x)

or
df

dx
= f ′(x).

This notation is used in the following way

d

dx

(
sin(6x)

)
= 6 cos(6x),

d

dt

(
cos(

t

3
)
)

= −1

3
sin(

t

3
).

Or:

Let f = x1/2. Then
df

dx
=

1

2
x−1/2.

Let g(x) =
1

x
. Then

dg

dx
=

d

dx

(
g(x)

)
=

d

dx

(1

x

)
= − 1

x2
.

The
d

dx
notation is due to Leibnitz, and is older than our concept of func-

tion.
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Leibnitz wrote the differentiation formulas as “dxa = axa−1dx,” or if
y = xa, then “dy = axa−1dx.” The notation f ′(x) for derivatives is due to
Joseph Louis Lagrange (1736-1813). Lagrange called f ′(x) the derived func-
tion of f(x) and it is from this that we get our word derivative. Leibnitz called
derivatives, differentials and Newton called them fluxions.

Many of the early users of the calculus thought of the derivative as the
quotient of two numbers

df

dx
=

difference in f

difference in x
=

f(x)− f(t)

x− t

when dx = x− t was “infinitely small”. Today “infinitely small” real numbers
are out of fashion, but some attempts are being made to bring them back. Cf
Surreal Numbers : How two ex-students turned on to pure mathematics and
found total happiness : a mathematical novelette, by D. E. Knuth.[30]. or The
Hyperreal Line by H. Jerome Keisler[28, pp 207-237].

11.2 Some General Differentiation Theorems.

11.12 Theorem (Sum rule for derivatives.) Let f, g be real valued func-
tions with domain(f) ⊂ R and domain(g) ⊂ R, and let c ∈ R. Suppose f and
g are differentiable at a. Then f + g, f − g and cf are differentiable at a, and

(f + g)′(a) = f ′(a) + g′(a)

(f − g)′(a) = f ′(a)− g′(a)

(cf)′(a) = c · f ′(a).

Proof: We will prove only the first statement. The proofs of the other state-
ments are similar. For all x ∈ dom(f) we have

(f + g)(x)− (f + g)(a)

x− a
=

f(x) + g(x)− (f(a) + g(a))

x− a

=
f(x)− f(a)

x− a
+

g(x)− g(a)

x− a

By the sum rule for limits of functions, it follows that

lim
x→a

(
(f + g)(x)− (f + g)(a)

x− a

)
= lim

x→a

(
f(x)− f(a)

x− a

)
+ lim

x→a

(
g(x)− g(a)

x− a

)
,
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i.e.
(f + g)′(a) = f ′(a) + g′(a). |||

11.13 Examples. If

f(x) = 27x3 +
1

3x
+
√

8x,

then

f(x) = 27x3 +
1

3
x−1 +

√
8 · x1/2,

so

f ′(x) = 27 · (3x2) +
1

3
(−1 · x−2) +

√
8 · (1

2
x−1/2)

= 81x2 − 1

3x2
+

√
2

x
.

If g(x) = (3x2 + 7)2, then g(x) = 9x4 + 42x2 + 49, so

g′(x) = 9 · 4x3 + 42 · 2x = 36x3 + 84x.

If h(x) = sin(4x) + sin2(4x), then h(x) = sin(4x) +
1

2

(
1− cos(8x)

)
, so

h′(x) = 4 cos(4x) +
1

2
(−1)

(
− 8 · sin(8x)

)

= 4 cos(4x) + 4 sin(8x).

d

ds

(
8 sin(4s) + s2 + 4

)
= 32 cos(4s) + 2s.

11.14 Exercise. Calculate the derivatives of the following functions:

a) f(x) = (x2 + 4x)2

b) g(x) =
√

3x3 +
4

x4
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c) h(t) = ln(t) + ln(t2) + ln(t3)

d) k(x) = ln(10 · x5/2)

e) l(x) = 3 cos(x) + cos(3x)

f) m(x) = cos(x) cos(3x)

g) n(x) =
(

sin2(x) + cos2(x)
)4

11.15 Exercise. Calculate

a)
d

dt

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!

)

b)
d

dt

(
h0 + v0(t− t0)− 1

2
g(t− t0)

2
)
. Here h0, v0, t0 and g are all constants.

c)
d

dt
(| − 100t|)

11.16 Theorem (The product rule for derivatives.) Let f and g be real
valued functions with dom(f) ⊂ R and dom(g) ⊂ R. Suppose f and g are
both differentiable at a. Then fg is differentiable at a and

(fg)′(a) = f(a) · g′(a) + f ′(a) · g(a).

In particular, if f = c is a constant function, we have

(cf)′(a) = c · f ′(a).

Proof: Let x be a generic point of dom(f) ∩ dom(g) \ {a}. Then

(fg)(x)− (fg)(a)

x− a
=

f(x)
(
g(x)− g(a)

)
+

(
f(x)− f(a)

)
g(a)

x− a

= f(x)

(
g(x)− g(a)

x− a

)
+

(
f(x)− f(a)

x− a

)
g(a).

We know that lim
x→a

(g(x)− g(a)

x− a

)
= g′(a) and lim

x→a

(f(x)− f(a)

x− a

)
= f ′(a). If

we also knew that lim
x→a

f(x) = f(a), then by basic properties of limits we could

say that

(fg)′(a) = lim
x→a

(fg)(x)− (fg)(a)

x− a
= f(a)g′(a) + f ′(a)g(a)
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which is what we claimed.
This missing result will be needed in some other theorems, so I’ve isolated

it in the following lemma.

11.17 Lemma (Differentiable functions are continuous.) Let f be a
real valued function such that dom(f) ⊂ R+. Suppose f is differentiable at
a point a ∈ dom(f). Then lim

x→a
f(x) = f(a). (We will define “continuous”

later. Note that neither the statement nor the proof of this lemma use the
word “continuous” in spite of the name of the lemma.)

Proof:

lim
x→a

f(x) = lim
x→a

(
f(x)− f(a)

x− a
· (x− a) + f(a)

)
.

Hence by the product and sum rules for limits,

lim
x→a

f(x) = f ′(a) · (a− a) + f(a) = f(a). |||

11.18 Example (Leibniz’s proof of the product rule.) Leibniz stated
the product rule as

dxy = xdy + ydx[34, page143]1

His proof is as follows:

dxy is the difference between two successive xy’s; let one of these
be xy and the other x + dx into y + dy; then we have

dxy = x + dx · y + dy − xy = xdy + ydx + dxdy;

the omission of the quantity dxdy which is infinitely small in com-
parison with the rest, for it is supposed that dx and dy are infinitely
small (because the lines are understood to be continuously increas-
ing or decreasing by very small increments throughout the series
of terms), will leave xdy + ydx.[34, page 143]

Notice that for Leibniz, the important thing is not the derivative,
dxy

dt
, but

the infinitely small differential, dxy.

1The actual statement is dxy = xdx + ydy, but this is a typographical error, since the
proof gives the correct formula.
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11.19 Theorem (Derivative of a reciprocal.) Let f be a real valued
function such that dom(f) ⊂ R. Suppose f is differentiable at some point a,

and f(a) 6= 0. Then
1

f
is differentiable at a, and

( 1

f

)′
(a) =

−f ′(a)
(
f(a)

)2 .

Proof: For all x ∈ dom
( 1

f

)
\ {a}

1
f(x)

− 1
f(a)

x− a
=

f(a)− f(x)

(x− a)f(x)f(a)
= −

(
f(x)− f(a)

)

(x− a)
· 1

f(x)f(a)
.

It follows from the standard limit rules that

lim
x→a

1
f(x)

− 1
f(a)

x− a
= −f ′(a) · 1

(
f(a)

)2 .

11.20 Theorem (Quotient rule for derivatives.) Let f, g be real valued
functions with dom(f) ⊂ R and dom(g) ⊂ R. Suppose f and g are both

differentiable at a, and that g(a) 6= 0. Then
f

g
is differentiable at a, and

(f

g

)′
(a) =

g(a)f ′(a)− f(a)g′(a)
(
g(a)

)2 .

11.21 Exercise. Prove the quotient rule.

11.22 Examples. Let

f(x) =
sin(x)

x
for x ∈ R \ {0}.

Then by the quotient rule

f ′(x) =
x(cos(x))− sin(x)

x2
.
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Let h(x) = x2 · |x|. Then by the product rule

h′(x) = x2
( x

|x|
)

+ 2x|x| = x|x|+ 2x|x| = 3x|x|

(since
x2

|x| =
|x|2
|x| = |x|).

The calculation is not valid at x = 0 (since |x| is not differentiable at 0,
and we divided by |x| in the calculation. However h is differentiable at 0 since

lim
t→0

h(t)− h(0)

t− 0
= lim

t→0

t2|t|
t

= lim
t→0

t|t| = 0, i.e., h′(0) = 0 = 3 · 0 · |0|. Hence the

formula
d

dx
(x2|x|) = 3x|x|

is valid for all x ∈ R.

Let g(x) = ln(x) · sin(10x) · √x. Consider g to be a product g = hk where
h(x) = ln(x) · sin(10x) and k(x) =

√
x. Then we can apply the product rule

twice to get

g′(x) =
(

ln(x) · sin(10x)
)
· 1

2
√

x

+

(
ln(x) ·

(
10 cos(10x)

)
+

1

x
sin(10x)

)√
x.

11.23 Exercise (Derivatives of tangent, cotangent, secant, cosecant.)
We define functions tan, cot, sec, and csc by

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
,

sec(x) =
1

cos(x)
, csc(x) =

1

sin(x)
.

The domains of these functions are determined by the definition of the domain
of a quotient, e.g. dom(sec) = {x ∈ R: cos x 6= 0}. Prove that

d
dx

tan(x) = sec2(x), d
dx

cot(x) = − csc2 x,

d
dx

sec(x) = tan(x) sec(x), d
dx

csc(x) = − cot(x) csc(x).
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(You should memorize these formulas. Although they are easy to derive, later
we will want to use them backwards; i.e., we will want to find a function whose
derivative is sec2(x). It is not easy to derive the formulas backwards.)

11.24 Exercise. Calculate the derivatives of the following functions. Sim-
plify your answers if you can.

a) f(x) = x · ln(x)− x.

b) g(x) =
ax + b

cx + d
(here a, b, c, d are constants).

c) k(x) = (x2 + 3x + 10)(x2 + 3x + 12).

d) m(x) =
cos(6x)

cos(7x)
.

11.25 Exercise. Let f , g, h, and k be differentiable functions defined on
R.
a) Express (fgh)′ in terms of f , f ′, g, g′, h and h′.
b) On the basis of your answer for part a), try to guess a formula for (fghk)′.
Then calculate (fghk)′, and see whether your guess was right.

11.3 Composition of Functions

11.26 Definition (f◦g.) Let A,B,C, D be sets and let f : A → B, g: C → D
be functions. The composition of f and g is the function f ◦ g defined by:

codomain(f ◦ g) = B = codomain(f).

dom(f ◦ g) = {x ∈ C: g(x) ∈ A}
= {x ∈ dom(g): g(x) ∈ dom(f)};

i.e., dom(f ◦ g) is the set of all points x such that f
(
g(x)

)
is defined. The rule

for f ◦ g is
(f ◦ g)(x) = f

(
g(x)

)
for all x ∈ dom(f ◦ g).

11.27 Example. If f(x) = sin(x) and g(x) = x2 − 2, then

(f ◦ g)(x) = sin(x2 − 2)
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and
(g ◦ f)(x) = sin2(x)− 2.

Thus
(f ◦ g)(0) = sin(−2) and (g ◦ f)(0) = −2 6= (f ◦ g)(0).

So in this case f ◦g 6= g◦f . Thus composition is not a commutative operation.

If h(x) = ln(x) and k(x) = |x|, then

(h ◦ k)(x) = ln(|x|)
and

(k ◦ h)(x) = | ln(x)|.

11.28 Exercise. For each of the functions F below, find functions f and g
such that F = f ◦ g. Then find a formula for g ◦ f .

a) F (x) = ln(tan(x)).

b) F (x) = sin(4(x2 + 3)).

c) F (x) = | sin(x)|.

11.29 Exercise. Let

f(x) =
√

1− x2,

g(x) =
1

1− x
.

Calculate formulas for f ◦ f , f ◦ (f ◦ f), (f ◦ f) ◦ f , g ◦ g, (g ◦ g) ◦ g, and
g ◦ (g ◦ g).

11.30 Entertainment (Composition problem.) From the previous ex-
ercise you should be able to find a subset A of R, and a function f : A → R
such that (f ◦ f)(x) = x for all x ∈ A. You should also be able to find a
subset B of R and a function g : B → R such that (g ◦ (g ◦ g))(x) = x for all
x ∈ B. Can you find a subset C of R, and a function h : C → R such that
(h ◦ (h ◦ (h ◦ h)))(x) = x for all x ∈ C? One obvious example is the function
f from the previous example. To make the problem more interesting, also add
the condition that (h ◦ h)(x) 6= x for some x in C.
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11.31 Theorem (Chain rule.) Let f, g be real valued functions such that
dom(f) ⊂ R and dom(g) ⊂ R. Suppose a ∈ dom(g) and g(a) ∈ domf , and g
is differentiable at a and f is differentiable at g(a). Then f ◦g is differentiable
at a, and

(f ◦ g)′(a) = f ′
(
g(a)

)
· g′(a).

Before we prove the theorem we will give a few examples of how it is used:

11.32 Example. Let H(x) =
√

10 + sin x. Then H = f ◦ g where

f(x) =
√

x, g(x) = 10 + sin(x),

f ′(x) =
1

2
√

x
, g′(x) = cos(x).

Hence

H ′(x) = f ′
(
g(x)

)
· g′(x)

=
1

2
√

10 + sin(x)
· cos(x).

Let K(x) = ln(5x2 + 1). Then K = f ◦ g where

f(x) = ln(x), g(x) = 5x2 + 1,

f ′(x) =
1

x
, g′(x) = 10x.

Hence

K ′(x) = f ′
(
g(x)

)
· g′(x)

=
1

5x2 + 1
· 10x =

10x

5x2 + 1
.

Usually I will not write out all of the details of a calculation like this. I will
just write:

Let f(x) = tan(2x + 4). Then f ′(x) = sec2(2x + 4) · 2.
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Proof of chain rule: Suppose g is differentiable at a and f is differentiable at
g(a). Then

f
(
g(x)

)
− f

(
g(a)

)

x− a
=

f
(
g(x)

)
− f

(
g(a)

)

g(x)− g(a)
· g(x)− g(a)

x− a
. (11.33)

Since g is differentiable at a, we know that

lim
x→a

g(x)− g(a)

x− a
= g′(a).

Hence the theorem will follow from (11.33), the definition of derivative, and
the product rule for limits of functions, if we can show that

lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
= f ′(g(a)).

Since g is differentiable at a, it follows from lemma 11.17 that

lim
x→a

g(x) = g(a). (11.34)

Let {xn} be a generic sequence in dom(f ◦ g)\{a}, such that {xn} → a. Then
by (11.34), we have

lim{g(xn)} = g(a). (11.35)

Since f is differentiable at g(a), we have

lim
t→g(a)

f(t)− f(g(a))

t− g(a)
= f ′(g(a)).

From this and (11.35) it follows that

lim

{
f(g(xn))− f(g(a))

g(xn)− g(a)

}
= f ′(g(a)).

Since this holds for a generic sequence {xn} in dom(f ◦ g) \ {a}, we have

lim
x→a

f(g(x))− f(g(a))

x− a
= f ′(g(a)),

which is what we wanted to prove. To complete the proof, I should show that
a is an interior point of dom(f ◦ g). This turns out to be rather tricky, so I
will omit the proof.
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Remark: Our proof of the chain rule is not valid in all cases, but it is valid
in all cases where you are likely to use it. The proof fails in the case where
every interval

(
g(a)−ε, g(a)+ε

)
contains a point b 6= a for which g(b) = g(a).

(You should check the proof to see where this assumption was made.) Constant
functions g satisfy this condition, but if g is constant then f ◦g is also constant
so the chain rule holds trivially in this case. Since the proof in the general
case is more technical than illuminating, I am going to omit it. Can you find
a non-constant function g for which the proof fails?

11.36 Example. If f is differentiable at x, and f(x) 6= 0, then

d

dx

(
|f(x)|

)
=

f(x)

|f(x)|f
′(x).

Also

d

dx

(
ln

(
|f(x)|

))
=

1

|f(x)|
d

dx

(
|f(x)|

)

=
1

|f(x)|
f(x)

|f(x)|f
′(x) =

f(x)f ′(x)

f(x)2
=

f ′(x)

f(x)
;

i.e.,
d

dx

(
ln |f(x)|

)
=

f ′(x)

f(x)
(11.37)

I will use this relation frequently.

11.38 Example (Logarithmic differentiation.) Let

h(x) =

√
(x2 + 1)(x2 − 4)10

(x3 + x + 1)3
. (11.39)

The derivative of h can be found by using the quotient rule and the product
rule and the chain rule. I will use a trick here which is frequently useful. I
have

ln
(
|h(x)|

)
=

1

2
ln(x2 + 1) + 10 ln(|x2 − 4|)− 3 ln(|x3 + x + 1|).

Now differentiate both sides of this equation using (11.37) to get

h′(x)

h(x)
=

1

2

2x

x2 + 1
+ 10

2x

x2 − 4
− 3

3x2 + 1

x3 + x + 1
.
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Multiply both sides of the equation by h(x) to get

h′(x) =

√
x2 + 1(x2 − 4)10

(x3 + x + 1)3

[ x

x2 + 1
+

20x

x2 − 4
− 3(3x2 + 1)

x3 + x + 1

]
.

This formula is not valid at points where h(x) = 0, because we took logarithms
in the calculation. Thus h is differentiable at x = 2, but our formula for h′(x)
is not defined when x = 2.

The process of calculating f ′ by first taking the logarithm of the absolute
value of f and then differentiating the result, is called logarithmic differentia-
tion.

11.40 Exercise. Let h be the function defined in (11.39) Show that h is
differentiable at 2, and calculate h′(2).

11.41 Exercise. Find derivatives for the functions below. (Assume here
that f is a function that is differentiable at all points being considered.)

a) F (x) = sin(f(x)).

b) G(x) = cos(f(x)).

c) H(x) = (f(x))r, where r is a rational number.

d) K(x) = ln((f(x)).

e) L(x) = |f(x)|.
f) M(x) = tan(f(x)).

g) N(x) = cot(f(x)).

h) P (x) = sec(f(x)).

i) Q(x) = csc(f(x)).

j) R(x) = ln(|f(x)|).

11.42 Exercise. Find derivatives for the functions below. (Assume here
that f is a function that is differentiable at all points being considered.)

a) F (x) = f(sin(x)).
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b) G(x) = f(cos(x)).

c) H(x) = f(xr), where r is a rational number.

d) K(x) = f(ln(x)).

e) L(x) = f(|x|).
f) M(x) = f(tan(x)).

g) N(x) = f(cot(x)).

h) P (x) = f(sec(x)).

i) Q(x) = f(csc(x)).

j) R(x) = f(ln(|x|).

11.43 Exercise. Calculate the derivatives of the following functions. Sim-
plify your answers.

a) a(x) = sin3(x) = (sin(x))3.

b) b(x) = sin(x3).

c) c(x) = (x2 + 4)10.

d) f(x) = sin(4x2 + 3x).

e) g(x) = ln
(
| cos(x)|

)
.

f) h(x) = ln
(
| sec(x)|

)
.

g) k(x) = ln
(
| sec(x) + tan(x)|

)
.

h) l(x) = ln
(
| csc(x) + cot(x)|

)
.

i) m(x) = 3x3 ln(5x)− x3.

j) n(x) =
√

x2 + 1 + ln
(√x2 + 1− 1

x

)
.

k) p(x) =
1

2
(x + 4)2 − 8x + 16 ln(x + 4).
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l) q(x) =
x

2

[
sin

(
ln(|6x|)

)
− cos

(
ln(|6x|)

)]
.


