
Chapter 10

Definition of the Derivative

10.1 Velocity and Tangents

10.1 Notation. If E1(x, y) and E2(x, y) denote equations or inequalities
in x and y, we will use the notation

{E1(x, y)} = {(x, y) :∈ R2: E1(x, y)}
{E1(x, y); E2(x, y)} = {(x, y) ∈ R2: E1(x, y) and E2(x, y)}.

{y = x2} {y = x2; x ≥ 1}

In this section we will discuss the idea of tangent to a curve and the related
idea of velocity of a moving point.

You probably have a pretty good intuitive idea of what is meant by the
tangent to a curve, and you can see that the straight lines in figure a below
represent tangent lines to curves.
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220 CHAPTER 10. DEFINITION OF THE DERIVATIVE

figure  a

It may not be quite so clear what you would mean by the tangents to the
curves in figure b at the point (0, 0).

{y2 = x3 + x2}{y = x}{y3 = x2}{y = x3}{y = |x|}
figure b

Euclid (fl. c. 300 B.C.) defined a tangent to a circle to be a line which
touches the circle in exactly one point. This is a satisfactory definition of
tangent to a circle, but it does not generalize to more complicated curves.

{y = x2}

For example, every vertical line intersects the parabola {y = x2} in just one
point, but no such line should be considered to be a tangent.

Apollonius (c 260-170 B.C.) defined a tangent to a conic section (i.e., an
ellipse or hyperbola or parabola) to be a line that touches the section, but lies
outside of the section. Apollonius considered these sections to be obtained by
intersecting a cone with a plane, and points inside of the section were points
in the cone.
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parabolaellipsehyperbola

This definition works well for conic sections, but for general curves, we have
no notion of what points lie inside or outside a curve.
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In the figure, the line ab ought to be tangent to the curve at c, but there is
no reasonable sense in which the line lies outside the curve. On the other hand,
it may not be clear whether pq (which lies outside the curve {x2/3 + y2/3 = 1}
is more of a tangent than the line rs which does not lie outside of it. Leibniz
[33, page 276] said that

to find a tangent means to draw a line that connects two points of
the curve at an infinitely small distance, or the continued side of a
polygon with an infinite number of angles, which for us takes the
place of the curve.

From a modern point of view it is hard to make any sense out of this.

Here is a seventeenth century sort of argument for finding a tangent to the
parabola whose equation is y = x2.
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(0,−y)

(0, y) (x, y)
x

2y
q = (x, 0)

p = (x, y)
r = (0, y)

Imagine a point p that is moving along the parabola y = x2, so that at time t,
p is at (x, y). (Here x and y are functions of t, but in the seventeenth century
they were just flowing quantities.) Imagine a point q that moves along the
x-axis so that q always lies under p and a point r moving along the y-axis
so that r is always at the same height as p. Let ẋ denote the velocity of q
when p is at (x, y) and let ẏ denote the velocity of r when p is at (x, y). Let
o be a very small moment of time. At time o after p is at (x, y), p will be at
(x + oẋ, y + oẏ) (i.e., x will have increased by an amount equal to the product
of the time interval o and its velocity ẋ). Since p stays on the curve, we have

y + oẏ = (x + oẋ)2

or
y + oẏ = x2 + 2xoẋ + o2ẋ2.

Since y = x2, we get
oẏ = 2xoẋ + o2ẋ2 (10.2)

or
ẏ = 2xẋ + oẋ2 (10.3)

Since we are interested in the velocities at the instant that p is at (x, y), we
take o = 0, so

ẏ = 2xẋ.

Hence when p is at (x, y), the vertical part of its velocity (i.e., ẏ) is 2x times
the horizontal component of its velocity. Now the velocity should point in the
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direction of the curve; i.e., in the direction of the tangent, so the direction of
the tangent at (x, y) should be in the direction of the diagonal of a box with

vertical side = 2x × horizontal side.

The tangent to the parabola at (x, y) = (x, x2) is the line joining (x, y) to
(0,−y), since in the figure the vertical component of the box is

2y = 2x2 = (2x)x;

i.e., the vertical component is 2x times the horizontal component.
In The Analyst: A Discourse Addressed to an Infidel Mathematician[7,

page 73], George Berkeley (1685-1753) criticizes the argument above, pointing
out that when we divide by o in line (10.3) we must assume o is not zero, and
then at the end we set o equal to 0.

All which seems a most inconsistent way of arguing, and such as
would not be allowed of in Divinity.

The technical concept of velocity is not a simple one. The idea of uniform

velocity causes no problems: to quote Galileo (1564-1642):

By steady or uniform motion, I mean one in which the distances
traversed by the moving particle during any equal intervals of time,
are themselves equal[21, page 154].

This definition applies to points moving in a straight line, or points moving
on a circle, and it goes back to the Greek scientists. The problem of what is
meant by velocity for a non-uniform motion, however, is not at all clear. The
Greeks certainly realized that a freely falling body moves faster as it falls, but
they had no language to describe the way in which velocity changes. Aristotle
(384-322 B.C.) says

there cannot be motion of motion or becoming of becoming or in
general change of change[11, page 168].

It may not be clear what this means, but S. Bochner interprets this as saying
that the notion of a second derivative (this is a technical term for the math-
ematical concept used to describe acceleration which we will discuss later) is
a meaningless idea[11, page 167]. Even though we are in constant contact
with non-uniformly moving bodies, our intuition about the way they move
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is not very good. In the Dialogues Concerning Two New Sciences, Salviati
(representing Galileo) proposes the hypothesis that if a stone falls from rest,
then it falls in such a way that “in any equal intervals of time whatever, equal
increments of speed are given to it”[21, page 161].

In our language, the hypothesis is that the velocity v(t) at time t satisfies

v(t) = kt for some constant k.

Sagredo objects to this on the grounds that this would mean that the object
begins to fall with zero speed “while our senses show us that a heavy falling
body suddenly acquires great speed.” (I believe Sagredo is right. Try dropping
some bodies and observe how they begin to fall.) Salviati replies that this is
what he thought at first, and explains how he came to change his mind.

Earlier, in 1604, Galileo had supposed that

v(x) = kx for some constant k;

i.e., that in equal increments of distance the object gains equal increments of
speed (which is false), and Descartes made the same error in 1618 [13, page
165]. Casual observation doesn’t tell you much about falling stones.

10.4 Entertainment (Falling bodies.) Try to devise an experiment to
support (or refute) Galileo’s hypothesis that v(t) = kt, using materials avail-
able to Galileo; e.g., no stop watch. Galileo describes his experiments in [21,
pages 160-180], and it makes very good reading.

10.2 Limits of Functions

Our definition of tangent to a curve is going to be based on the idea of limit.
The word limit was used in mathematics long before the definition we will
give was thought of. One finds statements like “The limit of a regular polygon
when the number of sides becomes infinite, is a circle.” Early definitions of
limit often involved the ideas of time or motion. Our definition will be purely
mathematical.

10.5 Definition (Interior points and approachable points.) Let S be
a subset of R. A point x ∈ S is an interior point of S if there is some positive
number ǫ such that the interval (x − ǫ, x + ǫ) is a subset of S. A point x ∈ R
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is an approachable point from S if there is some positive number ǫ such that
either (x − ǫ, x) ⊂ S or (x, x + ǫ) ⊂ S. (Without loss of generality we could

replace “ǫ” in this definition by
1

N
for some N ∈ Z+.)

Note that interior points of S must belong to S. Approachable points of S

need not belong to S. Any interior point of S is approachable from S.

10.6 Example. If S is the open interval (0, 1) then every point of S is an
interior point of S. The points that are approachable from S are the points in
the closed interval [0, 1].

If T is the closed interval [0, 1] then the points that are approachable from
T are exactly the points in T , and the interior points of T are the points in
the open interval (0, 1).

10.7 Definition (Limit of a function.) Let f be a real valued function
such that dom(f) ⊂ R. Let a ∈ R and let L ∈ R. We say

lim
x→a

f(x) = L (10.8)

if

1) a is approachable from dom(f), and

2) For every sequence {xn} in dom(f) \ {a}

{xn} → a =⇒ {f(xn)} → L.

Note that the value of f(a) (if it exists) has no influence on the meaning of
lim
x→a

f(x) = L. Also the “x” in (10.8) is a dummy variable, and can be replaced

by any other symbol that has no assigned meaning.

10.9 Example. For all a ∈ R we have

lim
x→a

x = a.

Also
lim
x→a

cos(x) = cos(a)

and
lim
x→a

sin(x) = sin(a),
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by lemma 9.34. Also

lim
x→0

sin x

x
= 1

by theorem 9.37.

10.10 Example. lim
x→0

x

|x| is not defined. Let xn =
(−1)n

n
. Then {xn} is a

sequence in R\{0}, and {xn} → 0 and
xn

|xn|
=

(−1)n

n

( 1
n
)

= (−1)n. We know there

is no number L such that {(−1)n} → L.

10.11 Example. Let f be the spike function

f(x) =

{

0 if x ∈ R \ {1
2
}

1 if x = 1
2
.

1

1

Then lim
x→ 1

2

f(x) = 0, since if {xn} is a generic sequence in dom(f) \ {1
2
}, then

{f(xn)} is the constant sequence {0}.

10.12 Example. The limit

lim
x→0

(
√

x +
√
−x)

does not exist. If f(x) =
√

x +
√
−x, then the domain of f consists of the

single point 0, and 0 is not approachable from dom(f). If we did not have
condition 1) in our definition, we would have

lim
x→0

√
x +

√
−x = 0 and lim

x→0

√
x +

√
−x = π,
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which would not be a good thing. (If there are no sequences in dom(f) \ {a},
then

for every sequence {xn} in dom(f) \ {a}[statement about {xn}]

is true, no matter what [statement about {xn}] is.)
In this course we will not care much about functions like

√
x +

√
−x.

10.13 Example. I will show that

lim
x→a

√
x =

√
a (10.14)

for all a ∈ R≥0.
Case 1: Suppose a ∈ R+. Let {xn} be a generic sequence in R+ \ {a} such
that {xn} → a. Then

0 ≤ |
√

xn −
√

a| =
∣

∣

∣

√
xn −√

a

1
·
√

xn +
√

a√
xn +

√
a

∣

∣

∣ =
|xn − a|√
xn +

√
a

<
|xn − a|√

a
.

Now, since {xn} → a, we have

lim

{

|xn − a|√
a

}

=
1√
a

lim{|xn − a|} = 0,

so by the squeezing rule lim{√xn −√
a} = 0 which is equivalent to

lim{√xn} =
√

a.

This proves (10.14) when a > 0.
Case 2: Suppose a = 0. The domain of the square root function is [0,∞), and
0 is approachable from this set.

Let {xn} be a sequence in R+ such that {xn} → 0. To show that {√xn} → 0,
I’ll use the definition of limit. Let ǫ ∈ R+. Then ǫ2 ∈ R+, so by the definition
of convergence, there is an N(ǫ2) ∈ Z+ such that for all n ∈ Z≥N(ǫ2) we have
(xn = |xn − 0| < ǫ2). Then for all n ∈ Z≥N(ǫ2) we have (

√
xn = |√xn − 0| < ǫ)

and hence {√xn} → 0. |||

Many of our rules for limits of sequences have immediate corollaries as rules
for limits of functions. For example, suppose f, g are real valued functions with
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dom(f) ⊂ R and dom(g) ⊂ R. Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M . Let

{xn} be a generic sequence in
(

dom(f) ∩ dom(g)
)

\ {a} such that {xn} → a.

Then {xn} is a sequence in dom(f) \ {a} and {xn} → a, so

{f(xn)} → L.

Also {xn} is a sequence in dom(g) \ {a} and {xn} → a so

{g(xn)} → M.

By the sum and product rules for sequences, for any c ∈ R

{(f ± g)(xn)} = {f(xn) ± g(xn)} → L ± M,

{(fg)(xn)} = {f(xn)g(xn)} → LM,

and
{(cf)(xn)} = {c · f(xn)} → cL,

and thus we’ve proved that

lim
x→a

(f ± g)(x) = L ± M = lim
x→a

f(x) ± lim
x→a

g(x)

lim
x→a

(fg)(x) = LM = lim
x→a

f(x) · lim
x→a

g(x)

and
lim
x→a

(cf)(x) = cL = c lim
x→a

f(x).

Moreover if a ∈ dom(
f

g
) (so that g(a) 6= 0), and if xn ∈ dom(

f

g
) for all xn (so

that g(xn) 6= 0 for all n), it follows from the quotient rule for sequences that

{

(
f

g
)(xn)

}

=
{f(xn)

g(xn)

}

→ L

M
,

so that

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0.

Actually all of the results just claimed are not quite true as stated. For we
have

lim
x→0

√
x = 0
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and
lim
x→0

√
−x = 0

but
lim
x→0

√
x +

√
−x does not exist!

The correct theorem is:

10.15 Theorem (Sum, product, quotient rules for limits.) Let f, g

be real valued functions with dom(f) ⊂ R and dom(g) ⊂ R, and let c ∈ R.

Suppose lim
x→a

f(x), and lim
x→a

g(x) both exist. Then if a is approachable from

dom(f) ∩ dom(g) we have

lim
x→a

(f ± g)(x) = lim
x→a

f(x) ± lim
x→a

g(x)

lim
x→a

(fg)(x) = lim
x→a

f(x) · lim
x→a

g(x)

lim
x→a

(cf)(x) = c · lim
x→a

f(x).

If in addition lim
x→a

g(x) 6= 0 then

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
.

Proof: Most of the theorem follows from the remarks made above. We will
assume the remaining parts.

10.16 Theorem (Inequality rule for limits of functions.) Let f and g

be real functions with dom(f) ⊂ R and dom(g) ⊂ R. Suppose that

i lim
x→a

f(x) and lim
x→a

g(x) both exist.

ii a is approachable from dom(f) ∩ dom(g).

iii There is a positive number ǫ such that

f(x) ≤ g(x) for all x in dom(f) ∩ dom(g) ∩ (a − ǫ, a + ǫ).

Then lim
x→a

f(x) ≤ lim
x→a

g(x).
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Proof: Let {xn} be a sequence in
(

dom(f)∩dom(g)∩ (a− ǫ, a+ ǫ)
)

\ {a} such

that {xn} → a. Then {xn} is a sequence in dom(f) \ {a} that converges to a,
so by the definition of limit of a function,

lim{f(xn)} = lim
x→a

f(x).

Similiarly
lim{g(xn)} = lim

x→a
g(x).

Also f(xn) ≤ g(xn) for all n, so it follows from the inequality rule for limits of
sequences that lim{f(xn)} ≤ lim{g(xn)}, i.e. lim

x→a
f(x) ≤ lim

x→a
g(x). |||.

10.17 Theorem (Squeezing rule for limits of functions.) Let f , g and

h be real functions with dom(f) ⊂ R, dom(g) ⊂ R, and dom(h) ⊂ R. Suppose

that

i lim
x→a

f(x) and lim
x→a

h(x) both exist and are equal.

ii a is approachable from dom(f) ∩ dom(g) ∩ dom(h).

iii There is a positive number ǫ such that f(x) ≤ g(x) ≤ h(x) for all x in

dom(f) ∩ dom(g) ∩ dom(h) ∩ (a − ǫ, a + ǫ).

Then lim
x→a

f(x) = lim
x→a

g(x) = lim
x→a

h(x).

Proof: The proof is almost identical to the proof of theorem 10.16.

10.3 Definition of the Derivative.

Our definition of tangent to a curve will be based on the following definition:

10.18 Definition (Derivative.) Let f be a real valued function such that
dom(f) ⊂ R. Let a ∈ dom(f). We say that f is differentiable at a if a is an
interior point of dom(f) and the limit

lim
x→a

f(x) − f(a)

x − a
(10.19)

exists. In this case we denote the limit in (10.19) by f ′(a), and we call f ′(a)
the derivative of f at a.
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x2 x1x3a{y = f(x)}
(a, f(a))

(x, f(x))

The quantity
f(x) − f(a)

x − a
represents the slope of the line joining the points

(

a, f(a)
)

and
(

x, f(x)
)

on the graph of f . If x and a are different points in

dom(f) then this quotient will be defined. If we choose a sequence of points

{xn} converging to a, and if the slopes
{f(xn) − f(a)

xn − a

}

converge to a number

m which is independent of the sequence {xn}, then it is reasonable to call m

(i.e., f ′(a)) the slope of the tangent line to the graph of f at
(

a, f(a)
)

.

10.20 Definition (Tangent to the graph of a function.) Let f be a
real valued function with dom(f) ⊂ R, and let a ∈ dom(f). If f is differen-
tiable at a then we define the slope of the tangent to graph(f) at the point
(

a, f(a)
)

to be the number f ′(a), and we define the tangent to graph(f) at
(

a, f(a)
)

to be the line that passes through
(

a, f(a)
)

with slope f ′(a).

Remark: This definition will need to be generalized later to apply to curves
that are not graphs of functions. Also this definition does not allow vertical
lines to be tangents, whereas on geometrical grounds, vertical tangents are
quite reasonable.

10.21 Example. We will calculate the tangent to {y = x3} at a generic
point (a, a3).

Let f(x) = x3. Then for all a ∈ R,

lim
x→a

f(x) − f(a)

x − a
= lim

x→a

x3 − a3

x − a
= lim

x→a

(x − a)(x2 + ax + a2)

(x − a)

= lim
x→a

(x2 + ax + a2) = a2 + a2 + a2 = 3a2.
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Hence the tangent line to graph(f) at (a, a3) is the line through (a, a3) with
slope 3a2, and the equation of the tangent line is

y − a3 = 3a2(x − a)

or
y = a3 + 3a2x − 3a3 = 3a2x − 2a3

or
y = a2(3x − 2a).

10.22 Example. We will now consider some of the examples on page 220.

{y = (x2)
1

3}{y = x3}{y = |x|}
no tangent at (0, 0) tangent crosses no tangent at (0, 0)

curve at (0, 0)

If f(x) = |x| then
f(x) − f(0)

x − 0
=

|x|
x

.

We saw in example 10.10 that lim
x→0

|x|
x

does not exist. Hence, the graph of

f at (0, 0) has no tangent.

If g(x) = x3, then in the previous example we saw that the equation of
the tangent to graph(g) at (0, 0) is y = 0; i.e., the x-axis is tangent to the
curve. Note that in this case the tangent line crosses the curve at the point of
tangency.

If h(x) = x then for all a ∈ R,

lim
x→a

h(x) − h(a)

x − a
= lim

x→a

x − a

x − a
= lim

x→a
1 = 1.
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The equation of the tangent line to graph(h) at (a, a) is

y = a + 1(x − a)

or y = x.
Thus at each point on the curve the tangent line coincides with the curve.

Let k(x) = (x2)1/3. This is not the same as the function l(x) = x2/3 since
the domain of l is R≥0 while the domain of k is R. (For all x ∈ R we have
x2 ∈ R≥0 = dom(g) where g(x) = x1/3.)

I want to investigate lim
x→0

k(x) − k(0)

x − 0
= lim

x→0

k(x)

x
. From the picture, I ex-

pect this graph to have an infinite slope at (0, 0), which means according to

our definition that there is no tangent line at (0, 0). Let {xn} =
{ 1

n3

}

. Then

{xn} → 0, but

k(xn)

xn
=

(

1
n6

)1/3

(

1
n3

) =
1
n2

1
n3

= n

so lim
{k(xn)

xn

}

does not exist and hence lim
x→0

k(x)

x
does not exist.

10.23 Example. Let f(x) =
√

x for x ∈ R≥0. Let a ∈ R+ and let
x ∈ dom(f) \ {a}. Then

f(x) − f(a)

x − a
=

√
x −√

a

x − a
=

√
x −√

a

(
√

x)2 − (
√

a)2

=

√
x −√

a

(
√

x −√
a)(

√
x +

√
a)

=
1√

x +
√

a
.

Hence

f ′(a) = lim
x→a

f(x) − f(a)

x − a
= lim

x→a

1√
x +

√
a

=
1√

a +
√

a
=

1

2
√

a
; (10.24)

i.e.,

f ′(a) =
1

2
√

a
for all a ∈ R+.

In line (10.24) I used the fact that lim
x→a

√
x =

√
a, together with the sum and

quotient rules for limits.
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10.25 Exercise. Let f(x) =
1

x
. Sketch the graph of f . For what values of

x do you expect f ′(x) to be −1? For what values of x do you expect f ′(x) to
be positive? What do you expect to happen to f ′(x) when x is a small positive
number? What do you expect to happen to f ′(x) when x is a small negative
number?

Calculate f ′(a) for arbitrary a ∈ dom(f). Does your answer agree with
your prediction?

10.26 Exercise. Let f(x) = sin(x) for −π < x < 4π. Sketch the graph of
f . Use the same scale on the x-axis and the y-axis.

On what intervals do you expect f ′(x) to be positive? On what intervals
do you expect f ′(x) to be negative? Calculate f ′(0).

On the basis of symmetry, what do you expect to be the values of f ′(π),
f ′(2π) and f ′(3π)? For what x do you expect f ′(x) to be zero? On the basis
of your guesses and your calculated value of f ′(0), draw a graph of f ′, where
f ′ is the function that assigns f ′(x) to a generic number x in (−π, 4π). On
the basis of your graph, guess a formula for f ′(x).
(Optional) Prove that your guess is correct. (Some trigonometric identities
will be needed.)

10.27 Exercise. Calculate f ′(x) if f(x) =
x

x + 1
.

10.28 Exercise.

a) Find f ′(x) if f(x) = x2 − 2x.

b) Find the equations for all the tangent lines to graph(f) that pass through
the point (0,−4). Make a sketch of graph(f) and the tangent lines.

10.29 Exercise. Consider the function f : (0, 8) → R whose graph is shown
below.

76

−1

54321 8

1

{y = f(x)}
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For what x in (0, 8) does f ′(x) exist? Sketch the graphs of f and f ′ on the
same set of axes.

The following definition which involves time and motion and particles is
not a part of our official development and will not be used for proving any
theorems.

10.30 Definition (Velocity.) Let a particle p move on a number line in
such a way that its coordinate at time t is x(t), for all t in some interval J .
(Here time is thought of as being specified by a number.) If t0, t1 are points
in J with t0 < t1, then the average velocity of p for the time interval [t0, t1] is
defined to be

x(t1) − x(t0)

t1 − t0
=

change in position

change in time
.

Note that x(t1)−x(t0) is not necessarily the same as the distance moved in the
time interval [t0, t1]. For example, if x(t) = t(1 − t) then x(1) − x(0) = 0, but

the distance moved by p in the time interval [0, 1] is
1

2
. (The particle moves

from 0 to
1

4
at time t =

1

2
, and then back to 0.)

The instantaneous velocity of p at a time t0 ∈ J is defined to be

lim
t→t0

x(t) − x(t0)

t − t0
= x′(t0)

provided this limit exists. (If the limit does not exist, then the instantaneous
velocity of p at t0 is not defined.) If we draw the graph of the function x; i.e.,

{
(

t, x(t)
)

: t ∈ J}, then the velocity of p at time t0 is by definition x′(t0) =

slope of tangent to graph(x) at
(

t0, x(t0)
)

.

In applications we will usually express velocity in units like
miles

hour
. We will

wait until we have developed some techniques for differentiation before we do
any velocity problems.

The definition of velocity just given would have made no sense to Euclid
or Aristotle. The Greek theory of proportion does not allow one to divide
a length by a time, and Aristotle would no more divide a length by a time
than he would add them. Question: Why is it that today in physics you are
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allowed to divide a length by a time, but you are not allowed to add a length
to a time?

In Newton’s calculus, the notion of instantaneous velocity or fluxion was
taken as an undefined, intuitively understood concept, and the fluxions were
calculated using methods similar to that used in the example on page 222.

The first “rigorous” definitions of limit of a function were given around
1820 by Bernard Bolzano (1781-1848) and Augustin Cauchy (1789-1857)[23,
chapter 1]. The definition of limit of a function in terms of limits of sequences
was given by Eduard Heine in 1872.


