
Chapter 7

Still More Area Calculations

7.1 Area Under a Monotonic Function

7.1 Theorem. Let f be a monotonic function from the interval [a, b] to R≥0.
Let {Pn} be a sequence of partitions of [a, b] such that {µ(Pn)} → 0, and let

Ab
af = α{(x, y) ∈ R2 : a ≤ x ≤ b and 0 ≤ y ≤ f(x)}

Then
{α

(
Ib
a(f, Pn)

)
} → Ab

af

and
{α

(
Ob

a(f, Pn)
)
} → Ab

af.

(The notation here is the same as in theorem 5.40 and exercise 5.47.)

Proof: We noted in theorem 5.40 and exercise 5.47 that

0 ≤ α
(
Ob

a(f, Pn)
)
− α

(
Ib
a(f, Pn)

)
≤ µ(Pn) · |f(b)− f(a)|. (7.2)

Since

lim {µ(Pn) · |f(b)− f(a)|} = |f(b)− f(a)| lim{µ(Pn)}
= |f(b)− f(a)| · 0 = 0,

we conclude from the squeezing rule that

lim
{
α

(
Ob

a(f, Pn)
)
− α

(
Ib
a(f, Pn)

)}
= 0. (7.3)
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We also have by (5.43) that

α
(
Ib
a(f, Pn)

)
≤ Ab

af ≤ α
(
Ob

a(f, Pn)
)
,

so that

0 ≤ Ab
af − α

(
Ib
a(f, Pn)

)
≤ α

(
Ob

a(f, Pn)
)
− α

(
Ib
a(f, Pn)

)
.

By (7.3) and the squeezing rule

lim
{
Ab

af − α
(
Ib
a(f, Pn)

)}
= 0,

and hence
lim

{
α

(
Ib
a(f, Pn)

)}
= Ab

af.

Also,

lim
{
α

(
Ob

a(f, Pn)
)}

= lim
{
α

(
Ib
a(f, Pn)

)
+

(
α(Ob

a(f, Pn))− α(Ib
a(f, Pn))

)}

= lim
{
α

(
Ib
a(f, Pn)

)}

+ lim
{(

α(Ob
a(f, Pn))− α(Ib

a(f, Pn))
)}

= Ab
af + 0 = Ab

af. |||
7.4 Definition (Riemann sum). Let P = {x0, x1, · · · , xn} be a partition

for an interval [a, b]. A sample for P is a finite sequence S = {s1, s2, · · · , sn}
of numbers such that si ∈ [xi−1, xi] for 1 ≤ i ≤ n. If f is a function from [a, b]
to R, and P is a partition for [a, b] and S is a sample for P , we define

∑
(f, P, S) =

n∑

i=1

f(si)(xi − xi−1)

and we call
∑

(f, P, S) a Riemann sum for f, P and S. We will sometimes
write

∑
([f(t)], P, S) instead of

∑
(f, P, S).

7.5 Example. If f is an increasing function from [a, b] to R≥0, and
P = {x0, · · · , xn} is a partition of [a, b], and Sl = {x0, · · · , xn−1}, then

∑
(f, P, Sl) = α(Ib

a(f, P )).

If Sr = {x1, x2, · · · , xn}, then
∑

(f, P, Sr) = α(Ob
a(f, P )).
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If Sm = {x0 + x1

2
, · · · , xn−1 + xn

2
} then

∑
(f, P, Sm) =

n∑

i=1

f
(xi−1 + xi

2

)
(xi − xi−1)

is some number between α(Ib
a(f, P )) and α(Ob

a(f, P )).

7.6 Theorem (Area theorem for monotonic functions.) Let f be a
monotonic function from the interval [a, b] to R≥0. Then for every sequence
{Pn} of partitions of [a, b] such that {µ(Pn)} → 0, and for every sequence {Sn}
where Sn is a sample for Pn, we have

{∑(f, Pn, Sn)} → Ab
af.

Proof: We will consider the case where f is increasing. The case where f is
decreasing is similar.

For each partition Pn = {x0, · · · , xm} and sample Sn = {s1, · · · , sm}, we
have for 1 ≤ i ≤ m

xi−1 ≤ si ≤ xi =⇒ f(xi−1) ≤ f(si) ≤ f(xi)

=⇒ f(xi−1)(xi − xi−1) ≤ f(si)(xi − xi−1) ≤ f(xi)(xi − xi−1).

Hence

m∑

i=1

f(xi−1)(xi − xi−1) ≤
m∑

i=1

f(si)(xi − xi−1) ≤
m∑

i=1

f(xi)(xi − xi−1),

i.e.,
α

(
Ib
a(f, Pn)

)
≤ ∑

(f, Pn, Sn) ≤ α
(
Ob

a(f, Pn)
)
.

By theorem 7.1 we have

{α
(
Ib
a(f, Pn)

)
} → Ab

af,

and
{α

(
Ob

a(f, Pn)
)
} → Ab

af,

so by the squeezing rule,

{∑(f, Pn, Sn)} → Ab
af.



154 CHAPTER 7. STILL MORE AREA CALCULATIONS

7.2 Calculation of Area under Power Func-

tions

7.7 Lemma. Let r be a rational number such that r 6= −1. Let a be a real
number with a > 1. Then

Aa
1[t

r] = (ar+1 − 1) lim





a
1
n − 1

a
r+1

n − 1



 .

(For the purposes of this lemma, we will assume that the limit exists. In
theorem 7.10 we will prove that the limit exists.)

Proof: Let n be a generic element of Z+. To simplify the notation, I will write

p = a
1
n , (so p > 1).

Let

Pn = {1, a 1
n , a

2
n , · · · , an

n} = {1, p, p2, · · · , pn} = {x0, x1, x2, · · · , xn}

and let
Sn = {1, p, p2, · · · , pn−1} = {s1, s2, s3 · · · , sn}.

Then for 1 ≤ i ≤ n

xi − xi−1 = pi − pi−1 = pi−1(p− 1),

so
µ(Pn) = pn−1(p− 1) ≤ pn(p− 1) = a

(
a

1
n − 1

)
.

It follows by the nth root rule (theorem 6.48) that {µ(Pn)} → 0. Hence it
follows from theorem 7.6 that

Aa
1[t

r] = lim
( ∑

([tr], Pn, Sn)
)
. (7.8)

Now

∑
([tr], Pn, Sn) =

n∑

i=1

sr
i (xi − xi−1)

=
n∑

i=1

(p(i−1))rpi−1(p− 1)
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= (p− 1)
n∑

i=1

(
pr+1

)(i−1)
(7.9)

= (p− 1)

(
p(r+1)n − 1

pr+1 − 1

)
=

(
(pn)r+1 − 1

) (
p− 1

pr+1 − 1

)

=
(
ar+1 − 1

) (a
1
n − 1)

(a
r+1

n − 1)
.

Here we have used the formula for a finite geometric series. Thus, from (7.8)

Aa
1[t

r] = lim
{
(ar+1 − 1)

(a
1
n − 1)

(a
r+1

n − 1)

}

= (ar+1 − 1) lim





a
1
n − 1

a
r+1

n − 1



 . |||

Now we want to calculate the limit appearing in the previous lemma. In
order to do this it will be convenient to prove a few general limit theorems.

7.10 Theorem. Let {xn} be a sequence of positive numbers such that {xn} → 1
and xn 6= 1 for all n ∈ Z+. Let β be any rational number. Then

{xβ
n − 1

xn − 1

}
→ β.

Proof: Suppose xn 6= 1 for all n, and {xn} → 1.
Case 1: Suppose β = 0. Then the conclusion clearly follows.
Case 2: Suppose β ∈ Z+. Then by the formula for a geometric series

xβ
n − 1

xn − 1
= 1 + xn + · · ·+ xβ−1

n .

By the sum theorem and many applications of the product theorem we con-
clude that

lim
{xβ

n − 1

xn − 1

}
= lim{1}+ lim{xn}+ · · ·+ lim{xβ−1

n }
= 1 + 1 + 1 + · · ·+ 1

= β.
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Case 3: Suppose β ∈ Z−. Let γ = −β. Then γ ∈ Z+, so by Case 2 we get

lim
{xβ

n − 1

xn − 1

}
= lim

{xγ
n(xβ

n − 1)

xγ
n(xn − 1)

}
= lim

{ 1− xγ
n

xγ
n(xn − 1)

}

= lim
{ 1

−xγ
n

(xγ
n − 1

xn − 1

)}

= lim
{ 1

−xγ
n

}
lim

{xγ
n − 1

xn − 1

}

=
1

−1
· γ = −γ = β.

Case 4: Suppose β=
p

q
where q ∈ Z+ and p ∈ Z. Let yn = x

1
q
n . Then

xβ
n − 1

xn − 1
=

x
p
q
n − 1

xn − 1
=

yp
n − 1

yq
n − 1

=

(yp
n − 1

yn − 1

)

(yq
n − 1

yn − 1

) .

Now if we could show that {yn} → 1, it would follow from this formula that

lim
{xβ

n − 1

xn − 1

}
=

lim
{

yp
n−1

yn−1

}

lim
{

yq
n−1

yn−1

} =
p

q
= β.

The next lemma shows that {yn} → 1 and completes the proof of theorem
7.10.

7.11 Lemma. Let {xn} be a sequence of positive numbers such that {xn} → 1,

and {xn} 6= 1 for all n ∈ Z+. Then for each q in Z+, {x
1
q
n} → 1.

Proof: Let {xn} be a sequence of positive numbers such that {xn} → 1. Let

yn = x
1
q
n for each n in Z+. We want to show that {yn} → 1. By the formula

for a finite geometric series

1 + yn + · · ·+ yq−1
n =

(1− yq
n)

1− yn

=
(1− xn)

1− yn

so

(1− yn) =
(1− xn)

1 + yn + · · ·+ yq−1
n

.
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Now

0 ≤ |1− yn| = |1− xn|
|1 + yn + · · ·+ yq−1

n | =
|1− xn|

1 + yn + · · ·+ yq−1
n

≤ |1− xn|.

Since {xn} → 1, we have lim{|1−xn|} = 0, so by the squeezing rule lim{|1−yn|} = 0,
and hence

lim{yn} = 1. |||

7.12 Lemma (Calculation of Ab
1[t

r].) Let b be a real number with b > 1,
and let r ∈ Q \ {−1}. Then

Ab
1[t

r] =
br+1 − 1

r + 1
.

Proof: By lemma 7.7,

Ab
1[t

r] = (br+1 − 1) lim
{ b

1
n − 1

b
r+1

n − 1

}
.

By theorem 7.10,

lim





b
1
n − 1

b
r+1

n − 1



 = lim





1

b
r+1

n −1

b
1
n−1





=
lim{1}

lim
{

b
r+1

n −1

b
1
n−1

} =
1

r + 1
,

and putting these results together, we get

Ab
1[t

r] =
br+1 − 1

r + 1
. |||

7.13 Lemma. Let r ∈ Q, and let a, c ∈ R+, with 1 < c. Then

Aca
a [tr] = ar+1Ac

1[t
r].
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Proof: If
P = {x0, x1, . . . , xn}

is a partition of [1, c], let

aP = {ax0, ax1, . . . , axn}

be the partition of [a, ca] obtained by multiplying the points of P by a. Then

µ(aP ) = aµ(P ). (7.14)

If
S = {s1, s2, . . . , sn}

is a sample for P , let
aS = {as1, as2, . . . , asn}

be the corresponding sample for aP . Then

∑
([tr], aP, aS) =

n∑

i=1

(asi)
r(axi − axi−1)

=
n∑

i=1

arsr
i a(xi − xi−1)

= ar+1
n∑

i=1

sr
i (xi − xi−1)

= ar+1
∑

([tr], P, S).

Let {Pn} be a sequence of partitions of [1, c] such that {µ(Pn)} → 0, and
for each n ∈ Z+ let Sn be a sample for Pn. It follows from (7.14) that
{µ(aPn)} → 0. By the area theorem for monotonic functions (theorem 7.6),
we have

{∑
([tr], Pn, Sn)

}
→ Ac

1[t
r] and

{∑
([tr], aPn, aSn)

}
→ Aca

a [tr].

Thus

Aca
a [tr] = lim{∑([tr], aPn, aSn)}

= lim{ar+1
∑

([tr], Pn, Sn)} = ar+1 lim{∑([tr], Pn, Sn)}
= ar+1Ac

1[t
r]. |||
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7.15 Theorem (Calculation of Ab
a[t

r].) Let a, b ∈ R+ with a < b, and let
r ∈ Q. Then

Ab
a[t

r] =





br+1 − ar+1

r+1
if r 6= −1

ln(b)− ln(a) if r = −1.

Proof: The result for the case r = −1 was proved in theorem 5.76. The case
r 6= −1 is done in the following exercise.

7.16 Exercise. Use the two previous lemmas to prove theorem 7.15 for the
case r 6= −1.

Remark: In the proof of lemma 7.7, we did not use the assumption r 6= −1
until line (7.9). For r = −1 equation (7.9) becomes

∑
([t−1], Pn, Sn) = n(a

1
n − 1).

Since in this case {∑([t−1], Pn, Sn)} → Aa
1[

1

t
] = ln(a),we conclude that

lim{n(a
1
n − 1)} = ln(a) for all a > 1. (7.17)

This formula give us method of calculating logarithms by taking square roots.
We know 2n(a

1
2n − 1) will be near to ln(a) when n is large, and a

1
2n can be

calculated by taking n successive square roots. On my calculator, I pressed
the following sequence of keys

2
√√ · · ·√
︸ ︷︷ ︸
15 times

−1 = ×2 × 2 · · · × 2︸ ︷︷ ︸
15 times

=

and got the result 0.693154611. My calculator also says that
ln(2) = 0.69314718. It appears that if I know how to calculate square roots,
then I can calculate logarithms fairly easily.

7.18 Exercise. Let r be a non-negative rational number, and let b ∈ R+.
Show that

Ab
0[t

r] =
br+1

r + 1
.

Where in your proof do you use the fact that r ≥ 0?


