Chapter 7

Still More Area Calculations

7.1 Area Under a Monotonic Function

7.1 Theorem. Let f be a monotonic function from the interval [a,b] to Rxy.
Let {P,} be a sequence of partitions of |a,b] such that {u(P,)} — 0, and let

Af=af(z,y) ER*:a<zx<band0<y< f(x)}

Then
{a(I2(f, P)} — Abf

and

{a(O4(f, Po))} — ALt

(The notation here is the same as in theorem 5.40 and exercise 5.47.)
Proof: We noted in theorem 5.40 and exercise 5.47 that

0 < a(OL(f. P)) — a(Il(f. P) < p(Py) - |F(b) = fla)l.  (7.2)
Since

lim {p(Po) - [f(0) = f(a)l} = [f(b) = f(a)| lim{u(Pn)}
= [f(b) = fla)] -0 =0,

we conclude from the squeezing rule that
tim {a (O (£, o)) = a(12(f, ) } = 0. (7.3)
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We also have by (5.43) that
a(12(f, P)) < AL < a(O4(f, Pa)),
so that
0< AL —a(18(f, P)) < a(ON(f, Po)) — a(I8(f, P)).
By (7.3) and the squeezing rule

lim {ALf — a(I2(f, P)} =0,

and hence
lim {a(I2(f, P.))} = AL,

Also,
lim {a(O4(f, P))} = tim{a(I2(f. P)) + (a(OL(f, Po)) — a(I2(f. ) }

= lim{a(I}(f,P.))}

+1im { (a(OL(f, P.)) — a(IL(f, Pn)) }

= Aof +0=Af. |
7.4 Definition (Riemann sum). Let P = {xg,x1, -, x,} be a partition
for an interval [a,b]. A sample for P is a finite sequence S = {s1, 52, -+, Sn}

of numbers such that s; € [z;_1, ;] for 1 <i < n. If f is a function from [a, 0]
to R, and P is a partition for [a,b] and S is a sample for P, we define

n

DUFHPS) =) flsi)(w — xim1)

=1

and we call Y(f, P,S) a Riemann sum for f, P and S. We will sometimes
write > ([f(¢)], P, S) instead of > (f, P, S).

7.5 Example. If f is an increasing function from [a,b] to R>o, and
P ={zg,---,x,} is a partition of [a,b], and S; = {zg, -, x,_1}, then

> (f,P.S) = a(L.(f, P)).
If S, ={zy,x9,---,x,}, then
> (f, PS5,) = a(O4f, P)).
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To + X1 Tp_1+ Ty

If S, =4 5 5 } then
=1

is some number between a(I°(f, P)) and a(O%(f, P)).

7.6 Theorem (Area theorem for monotonic functions.) Let f be a
monotonic function from the interval [a,b] to Rso. Then for every sequence
{P.} of partitions of [a, b] such that {(P,)} — 0, and for every sequence {S,}
where S, is a sample for P,, we have

{Z(fa P, Sh)} — Azf

Proof: We will consider the case where f is increasing. The case where f is
decreasing is similar.

For each partition P, = {zg, -+, x,,} and sample S, = {s1,--,s,}, we
have for 1 <7 <m

i1 <5 <x; = f(zim1) < f(s0) < fla)
= f(ri) (@ —zi1) < f(si)(xi — wio1) < f@)(zi — 20m0).

Hence
Zf(xlfl)(xi —xi1) < Zf(si)(:c@ ziq) < Z:f(xz)(:cz Ti1),
ie.,

o
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> (P Sa) < a(OL(f, Pa)).-
By theorem 7.1 we have
{a(IL(f, P))} — Abf,

and
{a(OL(f, P))} — Abf,

so by the squeezing rule,

{D_(f Pay Su)} — ALt
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7.2 Calculation of Area under Power Func-
tions

7.7 Lemma. Let r be a rational number such that r # —1. Let a be a real
number with a > 1. Then

ALt = (a”l —1)lim {arzl— 1 } )

an —1

(For the purposes of this lemma, we will assume that the limit exists. In
theorem 7.10 we will prove that the limit exists.)

Proof: Let n be a generic element of Z*. To simplify the notation, I will write
p:a%, (sop>1).
Let
Pn = {]_,CL%,(I%, e JG%} = {17p7p27 e 7pn} = {.T(),Z'l,l'g, e 7xn}
and let
Sn = {17p7p27 e Jpnil} = {517 82,83, 8n}~
Then for 1 <i<n
Ti—xi=p —p ' =p p-1),

p(P) =p" Mp—1) <p'(p—1) =a(ar —1).

It follows by the nth root rule (theorem 6.48) that {u(F,)} — 0. Hence it
follows from theorem 7.6 that

AL = tim (Y[, Pa, Sn)).- (7.8)

Now

M=

(ZUZ' - ﬂfi—l)

Z([trL Py, Sn) -
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:(p_nﬁi@”§”” (7.9)

=1

- o0 () o ()

Here we have used the formula for a finite geometric series. Thus, from (7.8)

, " (aw —1)
2] {( )<aT - 1>}

Now we want to calculate the limit appearing in the previous lemma. In
order to do this it will be convenient to prove a few general limit theorems.

7.10 Theorem. Let {x,} be a sequence of positive numbers such that {x,} — 1
and x, # 1 for alln € Z*. Let 3 be any rational number. Then

p—1
{;_1}H5.

Proof: Suppose x,, # 1 for all n, and {z,} — 1.
Case 1: Suppose § = 0. Then the conclusion clearly follows.
Case 2: Suppose 3 € Z*. Then by the formula for a geometric series

l‘/B_

e [ o N R
T, — 1

By the sum theorem and many applications of the product theorem we con-
clude that

. 332 —1 . . . 8—1
llm{ 1} = lim{1} + lim{x,} + --- + lim{z, "}
Ty —

T+ 141441
= 0.
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Case 3: Suppose 3 € Z~. Let v = —3. Then v € Z™, so by Case 2 we get

nm{ifj}

= lim _i%}hm{ixii}
= _11-7——726

1

Case 4: Suppose 3= P where geZ" and p € Z. Let y, = 1. Then
q

» yn — 1
xﬁ—l_xg—l_yg—l_(yn_l)
xn—l_xn—l_y%—1_<yg_1)

Yn — 1

Now if we could show that {y,} — 1, it would follow from this formula that

B_1 lim {21
hm{xn 1} T {zq:} =2=5.
Tn — lim {ﬁ}
The next lemma shows that {y,} — 1 and completes the proof of theorem
7.10.

7.11 Lemma. Let{x,} be a sequence of positive numbers such that {x,} — 1,
1
and {x,} # 1 for alln € Z*. Then for each q in Z", {xi} — 1.

Proof: Let {z,} be a sequence of positive numbers such that {z,} — 1. Let
1

Yn = x5, for each n in Z*. We want to show that {y,} — 1. By the formula
for a finite geometric series

(L-y8) _ (1-a)

1 e -1 _
+ Y+ Y, 1y, 1y,

SO
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Now

|1 — 2, _ 11— x| <1—
Mg+l Tyt +yh ' ™ "

Since {x, } — 1, we have lim{|1—x,|} = 0, so by the squeezing rule lim{|1—y,|} = 0,
and hence
lim{y,} =1.|

7.12 Lemma (Calculation of A%[t"].) Let b be a real number with b > 1,
and let r € Q\ {—1}. Then

br+1 -1

Ab[] =
1[ ] r+1

Proof: By lemma 7.7,
AP = (b — 1) lim {7bﬂ

By theorem 7.10,

b — 1 1 lim{1 1
hm S = hm 1 = lm;{_,_l} = s
b= —1 brlzfl hm{bfltl} r+1
n— bn —1

and putting these results together, we get

it -1

Ab rl _—
1lt'] r+1

7.13 Lemma. Letr € Q, and let a,c € RY, with 1 < c¢. Then

AS[E) = a AL
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Proof: If
P ={xg,z1,...,2,}

is a partition of [1, ], let
aP = {axy,axy,...,ax,}
be the partition of [a, ca] obtained by multiplying the points of P by a. Then
p(aP) = au(P). (7.14)
If
S ={s1,52,...,8n}

is a sample for P, let
aS ={asy1,asy,...,as,}

be the corresponding sample for aP. Then

n

Z([tr],aP,aS) = Z(asi)r(axi—axi_l)

i=1

n
= Z a"sla(x; —x;_q)
i=1

= a™) si (s — zia)
i=1
= a™Y ("], P,S).

Let {P,} be a sequence of partitions of [1,c] such that {u(P,)} — 0, and
for each n € Z" let S, be a sample for P,. It follows from (7.14) that
{p(aP,)} — 0. By the area theorem for monotonic functions (theorem 7.6),
we have

{31, P S} — Al and {D°([#7], aPu, aS,) | — AL,
Thus
At = lim{Z([tr],aPn,aSn)}

= lim{a"™" > ([t'], Pn, Sp)} = " im{D ([¢'], P, Sn)}
= o TAJ] |
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7.15 Theorem (Calculation of A%[t"].) Let a,b € R* with a < b, and let
r € Q. Then

br+1 o a'r—l—l )
] - { DA
In(b) —In(a) if r=—1.

Proof: The result for the case r = —1 was proved in theorem 5.76. The case
r # —1 is done in the following exercise.

7.16 Exercise. Use the two previous lemmas to prove theorem 7.15 for the

case r # —1.

Remark: In the proof of lemma 7.7, we did not use the assumption r # —1
until line (7.9). For r = —1 equation (7.9) becomes

S([t7Y, Po, Su) = nan —1).
Since in this case {> ([t7"], P, Sn)} — A‘f[i] = In(a),we conclude that

lim{n(as — 1)} = In(a) for all a > 1. (7.17)

This formula give us method of calculating logarithms by taking square roots.
We know 2”(@2% — 1) will be near to In(a) when n is large, and a? can be
calculated by taking n successive square roots. On my calculator, I pressed
the following sequence of keys

2\/\/\/_1 = X2 X2 ... xXx2 =
15 times 15 times

and got the result 0.693154611. My calculator also says that
In(2) = 0.69314718. It appears that if I know how to calculate square roots,
then I can calculate logarithms fairly easily.

7.18 Exercise. Let 7 be a non-negative rational number, and let b € R*.

Show that
errl

r+1
Where in your proof do you use the fact that » > 07

Aglt] =



