Appendix B

Proofs of Some Area Theorems

B. 1 Theorem (Addition Theorem.) For any bounded sets S and T in \mathbf{R}^{2}

$$
\begin{equation*}
\alpha(S \cup T)=\alpha(S)+\alpha(T)-\alpha(S \cap T) \tag{B.2}
\end{equation*}
$$

and consequently

$$
\alpha(S \cup T) \leq \alpha(S)+\alpha(T)
$$

Proof: We have

$$
S \cup T=S \cup(T \backslash S) \text { where } S \cap(T \backslash S)=\emptyset
$$

and

$$
T=(T \backslash S) \cup(T \cap S) \text { where }(T \backslash S) \cap(T \cap S)=\emptyset
$$

Hence by the additivity of area

$$
\begin{equation*}
\alpha(S \cup T)=\alpha(S)+\alpha(T \backslash S) \tag{B.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(T)=\alpha(T \backslash S)+\alpha(T \cap S) \tag{B.4}
\end{equation*}
$$

If we solve equation (B.4) for $\alpha(T \backslash S$) and use this result in equation (B.3) we get the desired result. |||
B. 5 Corollary (Subadditivity of area.) Let $n \in \mathbf{Z}_{\geq 1}$, and let A_{1}, A_{2}, \cdots A_{n} be bounded sets in \mathbf{R}^{2}. Then

$$
\begin{equation*}
\alpha\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \alpha\left(A_{i}\right) . \tag{B.6}
\end{equation*}
$$

Proof: The proof is by induction. If $n=1$, then (B.6) says $\alpha\left(A_{1}\right) \leq \alpha\left(A_{1}\right)$, which is true. Suppose now that k is a generic element of $\mathbf{Z}_{\geq 1}$, and that (B.6) is true when $n=k$. Let A_{1}, \cdots, A_{k+1} be bounded sets in \mathbf{R}^{2}. Then

$$
\begin{aligned}
\alpha\left(\bigcup_{i=1}^{k+1} A_{i}\right) & =\alpha\left(\bigcup_{i=1}^{k} A_{i} \cup A_{k+1}\right) \\
& \leq \alpha\left(\bigcup_{i=1}^{k} A_{i}\right)+\alpha\left(A_{k+1}\right) \\
& \leq \sum_{i=1}^{k} \alpha\left(A_{i}\right)+\alpha\left(A_{k+1}\right)=\sum_{i=1}^{k+1} \alpha\left(A_{i}\right) .
\end{aligned}
$$

Hence (B.6) is true when $n=k+1$, and by induction the formula holds for all $n \in \mathbf{Z}_{n \geq k}$. $\|$
B. 7 Theorem (Monotonicity of Area.) Let S, T be bounded sets such that $S \subset T$. Then $\alpha(S) \leq \alpha(T)$.

Proof: If $S \subset T$ then $S \cap T=S$, and in this case equation (B.4) becomes

$$
\alpha(T)=\alpha(T \backslash S)+\alpha(S)
$$

Since $\alpha(T \backslash S) \geq 0$, it follows that $\alpha(T) \geq \alpha(S)$. \|
B. 8 Theorem (Additivity for almost disjoint sets.) Let $\left\{R_{1}, \cdots, R_{n}\right\}$ be a finite set of bounded sets such that R_{i} and R_{j} are almost disjoint whenever $i \neq j$. Then

$$
\begin{equation*}
\alpha\left(\bigcup_{i=1}^{n} R_{i}\right)=\sum_{i=1}^{n} \alpha\left(R_{i}\right) . \tag{B.9}
\end{equation*}
$$

Proof: The proof is by induction on n. For $n=1$, equation (B.9) says that $\alpha\left(R_{1}\right)=\alpha\left(R_{1}\right)$, and this is true. Now suppose $\left\{R_{1} \cdots R_{n+1}\right\}$ is a family of mutually almost-disjoint sets. Then

$$
\left(R_{1} \cup \cdots \cup R_{n}\right) \cap R_{n+1}=\left(R_{1} \cap R_{n+1}\right) \cup\left(R_{2} \cap R_{n+1}\right) \cup \cdots \cup\left(R_{n} \cap R_{n+1}\right)
$$

and this is a finite union of zero-area sets, and hence is a zero-area set. Hence, by the addition theorem,

$$
\alpha\left(\left(R_{1} \cup \cdots \cup R_{n}\right) \cup R_{n+1}\right)=\alpha\left(R_{1} \cup \cdots \cup R_{n}\right)+\alpha\left(R_{n+1}\right)
$$

i.e.,

$$
\alpha\left(\bigcup_{i=1}^{n+1} R_{i}\right)=\sum_{i=1}^{n} \alpha\left(R_{i}\right)+\alpha\left(R_{n+1}\right)=\sum_{i=1}^{n+1} \alpha\left(R_{i}\right)
$$

The theorem now follows from the induction principle. \||

