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We illustrate a method for visualizing adaptive evo-
lutionary phenomena in evolving systems [3]. The
method was originally illustrated very briey and ab-
stractly at the level of alleles [3], and it has sub-
sequently been applied in great detail at the level
of whole genotypes [2]. Here we apply the method
in some signi�cant detail to alleles in three di�erent
evolving systems: a model of the evolution of sensory-
motor strategies, a model of traders buying and selling
securities in a �nancial market using an evolving set
of market-forecasting rules, and an analogue of the �-
nancial market model in which natural selection is re-
placed by random selection. The underlying hypoth-
esis behind the visualization method is that \activity
wave diagrams" highlight the quality of the main adap-
tive events and adaptive phenomena in an evolving
system. This abstract contains wave diagrams show-
ing a variety of evolutionary phenomena such as com-
petetive exclusion, cooperation, and frozen accidents.

The evolutionary activity statistic we visualize are
computed from data obtained by observing an evolving
system. (More details are available elsewhere [3, 4, 2].)
We view an evolving system as a population of compo-
nents participating in a cycle of birth, life and death,
with each component largely determined by inherited
traits. Birth and mutation introduce innovations into
the population. Adaptive innovations persist in the
population because of their bene�cial e�ects for com-
ponent survival or reproduction, and non-adaptive in-
novations either disappear or persist passively. Our
purpose for using the evolutionary activity statistic
is to identify innovations that persist and continue
to be signi�cant. Counters are attached to compo-
nents for bookkeeping purposes, to update each com-
ponent's current activity as the component persists.
If the components are passed along during reproduc-
tion, the corresponding counters are inherited with the
components, maintaining an increasing activity count
for an entire lineage

To collect activity statistics, one must settle two ques-
tions: (1) What should be counted as a component of
the system, and when are these added or subtracted
from the system? (2) What should be a new compo-
nent's initial activity and how should this change over
time? In all the �gures shown here, the components
were chosen to be the evolving alleles encoding behav-
ioral rules used by the agents in the systems under
investigation, and such alleles are added to the system
with a new mutation and removed from the system
through the extinction of all genotypes containing the
allele. A rule's initial activity is zero, and it is incre-
mented by one each time the rule is actually used by
an agent in the system.
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Figure 1: Activity waves of market-forecasting rule al-
leles in the Santa Fe Arti�cial Stock Market, an agent-
based model of a �nancial market in which risk-averse
traders buy and sell stocks and bonds on the basis
of price forecasts they make using market-forecasting
rules [1]. The individual alleles in this model geneti-
cally encode the market-forecasting rules which com-
prise a trader's forecasting methods. A forecasting
rule's activity is incremented whenever a trader uses it
to forecast the market and thereby decide to buy or sell
in the market. Each trader's set of market-forecasting
rules evolves through the operation of a genetic algo-
rithm (GA). In the simulation shown here, the GA's
rate of evolution is moderate (the GA runs a thousand
times in the course of the simulation). There are ten
traders in this market, and each has one hundred fore-
casting rules at any given moment. Above: The GA
operates normally, i.e., natural selection determines
which rules \reproduce" and which rules \die" over
time. Below: A \neutral shadow" [4, 2] of the Arti�-
cial Stock Market, in which the GA's birth and death
processes occur throuth random selection. Comparing
these two activity wave diagrams shows the dramatic
e�ect of natural selection on the rules the traders use.
When natural selection operates normally, each trader
independently learns the optimal market forecasting
rule somewhere in the middle of the run. Once this op-
timal rule is learned, it is almost always subsequently
used. Note that random selection yields no genotypes
with anything like the persistence of the optimal rule
under natural selection.
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Figure 2: Activity waves of market forecasting rule al-
leles (as in Figure 1 except that the activity scale is
approximately doubled) when the GA operates very
frequently (the GA runs ten thousand times in the
course of this simulation). Here, the GA operates
normally, using natural selection. The activity wave
diagram shows that each trader almost immediately
learns the optimal forecasting rule and subsequently
uses virtually just that rule. One trader takes signi�-
cantly longer to learn the optimal rule.
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Figure 3: Activity waves of market forecasting rule al-
leles (as in Figure 1) with a very infrequent GA (the
GA runs ten times in the course of the whole simu-
lation). Above: Plotted on the same scale as Fig. 1.
Below: A blow-up of activity, with activity plotted on
a scale that is an order of magnitude smaller. Note
that, when the GA is very slow, no rule is used vastly
more than all other rules; i.e., the GA is too slow for
the traders to latch onto the optimal rule.
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Figure 4: Activity waves of sensory-motor rule alleles
and population level in Packard's Bugs|a model of
the evolution of sensory-motor strategies in a popula-
tion of agents competing for energetic resources in a
space-limited two-dimensional world [3]. An individ-
ual allele genetically encodes a single sensory-motor
rule in an agent's sensory-motor strategy. A rule's ac-
tivity is incremented each time the agent acts on a
rule. In this model, successful strategies take the form
of short cycles, repeatedly �ring a precise sequence of
sensory-motor rules. In general, a cycle's length is pro-
portional to its �tness. A wave's slope is inversely pro-
portional to the genotype's cycle length. All the evi-
dent major adaptive events in the wave diagram are in-
creases in cycle length. The �rst signi�cant wave in the
activity diagram shown here corresponds to a cycle of
length two. The next major adaptive innovation (vis-
ible in the population graph) is the introduction of a
cycle of length three, which corresponds to the second
major wave (at slightly lower slope, because the cycle
length is longer). The next major adaptive innovation
(visible in the population graph) is the introduction of
a cycle of length four. This corresponds to the third
major wave and to the changed slope in the second
major wave. This shows that the length-four cycle
incorporates some of the same sensory-motor rules in-
volved in the length-three cycle. A similar thing hap-
pens with the next major innovation|a length-six cy-
cle that reuses rules from the length-three and length-
four strategies. Note also the at wave left by one
of the rules in the original length-two cycle|a vesti-
gial rule, unused (unexpressed) after the advent of the
length-three cycle but still in the gene pool.
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Figure 5: Activity waves of sensory-motor rule alleles
and population level in another run of Packard's model
(see Fig. 4 caption). This run start with a length-two
cycle, and this strategy quickly spreads through all
the blocks in the Scatter world. Very early on in the
run a second length-two cycle emerges. (This happens
so quickly that the population level has no time to
level o� with the initial length-two cycle.) As it hap-
pens, agents can express these two length-two cycles
on the same tiny block without the agents colliding.
What happens, then, is that agents on a given block
express one of the length-two cycles for a while un-
til they are \bumped" into the other length-two cy-
cle. Thus, instead of regularly exercising a given cy-
cle, they exhibit a pattern of switching back and forth
between two length-two cycles. Thus, at any given
time, the sensory-motor rules in one cycle are being
expressed (at the characteristic frequency of length-
two cycles) while the rules in the other cycle are not
being used at all. All that changes is that at random
intervals there is a switch between which cycle is ex-
pressed and which is unexpressed. The net e�ect is
that all rules are used on average with the character-
istic frequency of a length-four cycle; this is evident
in the relatively \cloudy" waves left by the co-existing
length-two cycles. Eventually (at little after the mid-
dle of this simulation), a length-�ve cycle is introduced
and out-competes the pair of co-existing length-two cy-
cles. The fact that one of the length-�ve cycle waves
grows out of the length-two cycle waves shows that
some of the rules in the length-�ve cycle were used in
the length-two cycles.


