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Faced with the overwhelming abstraction of, predictably, abstract algebra, it is
hard to know what application the topics have for real world problems. I picked
up the book Algorithmic Algebra by Bhubaneswar Mishra for a more concrete,
nay, constructive point of view. This write-up provides some basic definitions and
theorems on the way to an algorithm for constructing Gröbner bases for a finitely
generated ideal. In order to develop constructive methods to compute a Gröbner
basis of an ideal, the underlying ring must be a strongly computable ring, i.e. it
must be:

• detachable
• syzygy-solvable
• computable, and
• Noetherian.

Syzygy-solvability is outside the scope of this paper, so we will focus on definitions
and theorems about the Noetherian characteristic and direct the reader to Mishra’s
text for further study. Detachibility and computability are somewhat simple, so we
will define them after taking a moment to introduce notation for the ideal generated
by a set {a1, ..., ak} ⊆ R, where R is a ring (using normal parentheses to differentiate
from a group generator, denoted 〈x〉):

(a1, ..., ak) =

{
k∑

i=1

riai : ri ∈ R

}
.

Definition 0.1 (Computability). A ring S is said to be computable if for given
r, s ∈ S, there are algorithmic procedures to compute −r, r + s, and r · s. If S is a
field, then we assume that for a given nonzero field element r ∈ S (r 6= 0), there is
an algorithmic procedure to compute r−1.

Definition 0.2 (Detachability). Let S be a ring, s ∈ S and {s1, ..., sq} ⊆ S. S
is said to be detachable if there is an algorithm to decide whether s ∈ (s1, ..., sq). If
so, the algorithm produces a set {t1, ..., tq} ∈ S, such that

s = t1s1 + · · ·+ tqsq.

1. Polynomial Rings

Definition 1.1 (Power Products). A power product is an element from a mul-
tivariate polynomial ring of the form p = xe1

1 xe2
2 · · ·xen

n , ei ≥ 0. We refer to the set
of all power products over a finite number of variables as PP(x1, ..., xn).
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Lemma 1.2 (Dickson’s Lemma). Every set X ⊆ PP (x1, ..., xn) contains a finite
subset Y ⊆ X such that each p ∈ X is a multiple of some power product in Y .

Proof sketch:
This theorem can be made more obvious by thinking of each indeterminate xi as a
prime number and each power product p ∈ PP(x1, ..., xn) is a composite number.
Then, because we have a finite number of primes, xi’s and each power product is
either composite or among the finite number of primes, there will clearly always be
a subset Y of a subset X such that all elements of X can be expressed as a multiple
of an element of Y by elements of the set X.

Proof:
We use proof by induction on the number of variables, n. For the base case, n = 1,
we let Y = X. So, assuming n > 1, pick any p0 ∈ X,

p0 = xe1
1 xe2

2 · · · xen
n .

Then every p ∈ X that is not divisible by p0 belongs to at least one of
∑n

i=1 ei
different sets Xi,j (1 ≤ i ≤ n, 0 ≤ j ≤ ei − 1) which contain power products p ∈ X
for which degxi

(p) = j. Let X ′i,j be the set of power products constructed by re-

moving the factor xj
i from the power products in Xi,j . By the inductive hypothesis,

there exist finite subsets Y ′i,j ⊆ X ′i,j such that each power product p ∈ X ′i,j can be
obtained by multiplying some power product q ∈ Y ′i,j by a power product x ∈ X.
Define Yi,j as:

Yi,j = {p · xj
i : p ∈ Y ′i,j}.

We now adjoin p0 to the union of these sets Yi,j , so that every power product in X
is a multiple of some power product in the finite set:

Y =

{p0} ∪⋃
i,j

Yi,j

 ⊆ X.

Theorem 1.3. Let K be a field, and I ⊆ K[x1, ..., xn] be a monomial ideal. Then
I is finitely generated.
Proof: Let G be a set of monomial generators of I, (G) = I. Let

X = {p ∈ PP(x1, ..., xn) : ap ∈ G, for some a ∈ K} .

Note that (X) = (G) = I.

• m = ap ∈ G⇒ m ∈ (X)
• p ∈ X ⇒ ∃ m = ap ∈ G such that p = a−1m ∈ (G)

By Dickson’s Lemma, X contains a finite subset Y ⊆ X such that each p ∈ X is a
mutliple of a power product q ∈ Y . Clearly, Y ⊆ X ⇒ (Y ) ⊆ (X). Furthermore,

p ∈ X ⇒ ∃ q ∈ Y such that q | p, which implies p ∈ (Y ).

As a result, (X) = (Y ) = I, and Y is a finite basis of I.

Definition 1.4 (Admissible Ordering). A total ordering ≤
A

on the set of power

products PP(x1, ..., xn) is called admissible if for all power products p, p′, and q ∈PP(x1, ..., xn),
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(1) 1 ≤
A
p

(2) p ≤
A
p′ ⇒ pq ≤

A
p′q

The total ordering ≤
A

is called semiadmissible if it satisfies the second condition

but not necessarily the first.

Lemma 1.5. Every admissible ordering ≤
A

on PP is a well-ordering.

Proof: To derive a contradiction, suppose we have an infinite descending sequence
of power products:

p1 >
A
p2 >

A
· · · >

A
pi >

A
· · ·

Let X = {p1, p2, ..., pi, ...} and Y ⊆ X be a finite subset such that every p ∈ X is a
multiple of some power product in Y (by Dickson’s Lemma). Let p′ be the power
product that is smallest in Y under the ordering ≤

A
:

p′ = min
≤
A

Y

The power products in X form an infinite descending sequence, so ∃ q ∈ X such
that q <

A
p′. However,

∃ p ∈ Y such that p | q (by defn. of Y ) and therefore ∃ p ∈ Y such that p ≤
A
q <

A
p′,

contradicting the choice of p′ as the smallest power product in Y under the ordering
≤
A
, so we are finished.

Definition 1.6 (Head Monomial). The head monomial of a polynomial p is the
monomial in p whose power product is largest under some admissible ordering ≤

A
.

If p = m1 +m2 + · · ·+mk is written in decreasing order under ≤
A

(as is standard),

the head monomial of p is m1. We say m1 = Hmono (p) = Hcoef (p) · Hterm(p),
where Hcoef (p) is m1’s ring coefficient and Hterm (p) is m1’s power product.

2. Gröbner Bases

Definition 2.1 (Head Monomial Ideal). The head monomial ideal of a subset
G of a multivariate polynomial ring R is the ideal generated by the head monomials
of the elements of G :

Head(G) = ({Hmono (g) : g ∈ G}).

By convention, Hmono (0) =Hcoef (0) = 0 and Tail(p) = p − Hmono (p).

Definition 2.2 (Gröbner Basis). A subset G of an ideal I ⊆ R is called a
Gröbner Basis of the ideal if Head(G) = Head(I).

Theorem 2.3. Let I ⊆ R be an ideal of R, and G a subset of I. Then

Head(G) = Head(I)⇒ (G) = I

Proof:
Since G ⊆ I, the ideal generated by G lives inside I. If (G) 6= I, we can choose
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a polynomial f ∈ I\(G) such that Hmono(f) is minimal with respect to some
admissible well-ordering ≤

A
. Then Hmono(f) ∈ Head(I) = Head(G):

Hmono(f) =
∑
gi∈G

tiHmono(gi), ti ∈ R,

and,

f ′ = Tail(f)−
∑
gi∈G

tiTail(gi)

= f −Hmono(f)−
∑
gi∈G

ti(gi −Hmono(gi))

= f −
∑
gi∈G

tiHmono(gi) +
∑
gi∈G

tiHmono(gi)−
∑
gi∈G

tigi

= f −
∑
gi∈G

tigi ∈ I.

Now, we know that f ′ ∈ I\(G) because, otherwise, f = f ′ +
∑

gi∈G tigi would be
in the ideal generated by G. You may sense a contradiction forming in our choice
of f. Hmono(f ′) <

A
Hmono(f) because the monomials in f ’s tail are clearly smaller

than Hmono(f) as well as the monomials in each tiTail(gi). As a result we have a
contradiction in the choice of f because it is not minimal w.r.t. <

A
. Contradiction

in hand, we can now say that (G) = I and every Gröbner basis of an ideal generates
the ideal.

Corollary 2.4.

(1) Two ideals I and J with the same Gröbner basis G are the same: I = (G) =
J.

(2) If J ⊆ I are ideals of R, and Head(J) = Head(I), then J=I.

Proposition 2.5. Let R be a ring. Then the following three statements are equiv-
alent:

(1) R is Noetherian
(2) The ascending chain condition (ACC) for ideals holds:

Any ascending chain of ideals of R,

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·
becomes stationary: there exists an n0 (1 ≤ n0) such that for all n >
n0, In0 = In.

(3) The maximal condition for ideals holds:
Any nonempty set of ideals of R contains a maximal element (with respect
to inclusion).

Theorem 2.6 (Hilbert’s Basis Theorem). If R is a Noetherian ring, so is R[x].

Proof Sketch:
We derive a contradiction by assuming R is Noetherian but R[x] is not. We use
the fact that there is an ideal of R[x] which is not finitely generated (assuming it
is not Noetherian) to make a series of k choices of the polynomial of least degree
from the ideal without all previous choices of the polynomial of least degree. We
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then contradict the k+ 1th choice of a polynomial of least degree by constructing a
polynomial of smaller degree out of the k + 1th polynomial and the k polynomials
of lesser degree already removed from the ideal.

Proof:
We assume R is Noetherian but R[x] is not in order to derive a contradiction. If
R[x] is not Noetherian, it must contain an Ideal, I, which is not finitely generated.
Let f1 ∈ I be a polynomial of least degree. Since I is not finitely generated, we can
then make a series of choices:
If fk (k ≥ 1) has already been chosen, we can choose fk+1, the polynomial of least
degree in I \ (f1, f2, ..., fk) because I is not finitely generated.
Let nk=deg(fk) and ak ∈ R be the leading coefficient of fk. Note:

• n1 ≤ n2 ≤ · · ·
• (a1) ⊆ (a1, a2) ⊆ · · · ⊆ (a1, a2, ..., ak) ⊆ (a1, a2, ..., ak, ak+1) ⊆ · · · is a

chain of ideals that must become stationary because R is Noetherian, i.e.
for some k, (a1, a2, ..., ak) = (a1, a2, ..., ak, ak+1), and ak+1 = b1a1 + b2a2 +
· · ·+ bkak, bi ∈ R.

Now construct the polynomial g:

g = fk+1 − b1x
nk+1−n1f1 − b2x

nk+1−n2f2 − · · · − bkx
nk+1−nkfk.

Notice that,

(1) deg(g) < deg(fk+1)
(2) g ∈ I
(3) g 6∈ (f1, f2, ..., fk)

In other words, g, a polynomial of lesser degree than the polynomial fk+1 (ostensibly
of least degree in I \ (f1, f2, ..., fk)) is a member of the set, contradiction ensues,
and we are finished.

Corollary 2.7.

(1) If R is a Noetherian ring, so is every polynomial ring R[x1, x2, ..., xn].
(2) For any field K, K[x1, x2, ..., xn] is a Noetherian ring.

Theorem 2.8. Let S be a Noetherian ring. Then every ideal of R = S[x1, x2, ..., xn]
has a finite Gröbner basis.
Proof:

S is Noetherian, so by Hilbert’s basis theorem, R = S[x1, x2, ..., xn] is too. Let <
A

be an arbitrary but fixed admissible ordering on PP(x1, x2, ..., xn).
Let I be an ideal in R and choose a polynomial g1 ∈ I. If G1 = {g1} ⊆ I is not a
Gröbner basis of I, then Head(G1) ( Head(I), and ∃ g2 ∈ I such that Hmono(g2) ∈
Head(I)\ Head(G1). Then G2 = {g1, g2} ⊆ I and Head(G1) ( Head(G2).
In the (k + 1)th step, assume we have chosen Gk = {g1, g2, ..., gk} ⊆ I. If Gk is not
a Gröbner basis for I, then there is a gk+1 ∈ I such that

Hmono (gk+1) ∈ Head (I)\Head (Gk),

and Gk+1 = Gk ∪ {gk+1} ⊆ I and Head(Gk) ( Head(Gk+1). However, R cannot
have a nonstationary chain of ideals:

Head (G1) ( Head (G2) ( · · · ( Head (Gk) ( · · ·
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because it is Noetherian. Then there is some n ≥ 1 such that Head (Gn) = Head (I).
Gn is a subset of I, so Gn = {g1, g2, ..., gn} is a finite Gröbner basis for I w.r.t. the
admissible ordering <

A
.

3. Epilogue

Some work with syzygies and S-polynomials and an algorithm for head reduction
leads to an algorithm for computing Gröbner bases for a finitely generated ideal.
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