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1. Introduction

Several (very good) books on Lie groups and algebras begin with absolutely
compelling introductions. Lie groups are, broadly speaking, the study of symmetry.
They are ubiquitous in modern mathematics and physics.

Eventually, it is revealed that in order to study the properties of Lie groups,
one employs Lie algebras. A definition is provided, and it is one that I did not
understand. Lie algebras, apparently, are closely related to - and sometimes defined
with - something called Lie brackets, which are fancy looking and strange sounding.

The goal of this paper is to motivate the definition of a Lie algebra and the Lie
bracket by studying homomorphisms of Lie groups and thinking in terms of group
actions. We hope that by the end of the paper the reader will feel that the definition
of a Lie algebra is something natural, and worthy of the lofty introductions that
the subject often receives.

To this end, we have not shied away from employing results from manifold theory
when necessary. We hope that Appendix B will provide sufficient background to
follow the main narrative. Similarly, we make frequent use of multilinear algebra,
but hope that Appendix A provides enough vocabulary to follow the text.

2. Representations of Finite Groups

We begin by discussing representations of groups, since we will eventually be
interested in representations of Lie groups. The discussion begins with some defi-
nitions and properties, and concludes with two basic theorems. The section follows
Lecture One in [1].

Definition 2.1 (Representation). A representation of a finite group G on a finite
dimensional complex vector space V is a group homomorphism ρ : G → GL(V ) of
G to the group of automorphisms of V .

The definition tells us that for every element g ∈ G there is a group homo-
morphism ρ(g) that acts on the vector space V . In this way, we can think of a
representation as a linear action of a group on a vector space.

Thinking of representations as actions on vector spaces should help motivate our
referential notation, which will be somewhat abusive. We will often call V itself a
representation of G, and we will write g · v or merely gv to mean ρ(g)(v). We call
the dimension of V the degree of ρ. We say that the map ρ gives V the structure of
a G-module.
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A map ϕ between two representations V and W of G is a vector space map
ϕ : V →W such that gϕ = ϕg,∀g ∈ G. That is to say:

V
ϕ

//

g

��

W

g

��

V
ϕ

// W

commutes for all g ∈ G.

Definition 2.2 (Subrepresentation). A subrepresentation of a representation V is
a vector subspace W of V which is invriant under G. That is,

gw ∈W ∀w ∈W, g ∈ G

So a subrepresentation is just an invariant subspace of G that is mapped to itself
by g.

Definition 2.3 (Irreducible representation). A representation V is called irre-
ducible if there is no proper nonzero invariant subspace W of V .

If V and W are representations, the direct sum V ⊕W is a representation via

g(v ⊕ w) = gv ⊕ gw

Likewise, the tensor product V ⊗W is a representation via

g(v ⊗ w) = gv ⊗ gw

Since the tensor product is a representation, the n-th tensor power V ⊗n is a rep-
resentation as well. The exterior and symmetric powers of V are subrepresentations
of the V ⊗n representation1.

So representations may be constructed out of other representations via linear
algebra operations, the simplest of which is the direct sum. It is natural to focus
on representations that are atomic with respect to the direct sum. That is:

Definition 2.4 (Irreducible). We call a representation V of a group G irreducible
iff V has no nontrivial invariant subspaces.

Theorem 2.5 (Maschke). Every representation of a finite group having positive
dimension is completely reducible

Given this theorem, it is natural to consider the extent to which the decomposi-
tion of an arbitrary representation into a direct sum of irreducible ones is unique.
The issue is addressed by Shur’s Lemma:

Lemma 2.6 (Shur). If V and W are irreducible representations of G and ϕ : V →
W is a G-module homomorphism, then either ϕ is an isomorphism or ϕ = 0.

Proof. Since V is irreducible and Kerϕ is an invariant subspace of V , Kerϕ = 0 or
Kerϕ = V . Likewise, W is irreducible and therefore Im (ϕ) = 0 or Im (ϕ) = W . If
kerϕ = V or Im (ϕ) = 0, then ϕ is the zero map. If kerϕ = 0 and Im (ϕ) = W ,
then we have an isomorphism. This completes the proof. �

1If the reason for this is not clear, please see Appendix A
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3. Lie Groups

With the idea of a representation behind us, we begin this short section on Lie
groups. The goal of the section is simply to provide a good idea of what a Lie group
is, and the idea of a group as a manifold is used from the beginning. If the reader
is unfamiliar with manifolds, now is a good time to consult Appendix B.

Definition 3.1. A lie group G is a set endowed with the structure of a group and
a C∞ manifold such that the group operations

µ : G×G µ(a, b) = ab

ι : G→ G, ι(a) = a−1

are C∞ mappings.

An example may help clarify the definition.

Example 3.2 (GL(n,R)). The general linear group of n × n matrices is an open
subset of Rn×n and therefore a manifold.2

Matrix multiplication

(AB)ij =
n∑
k=1

aikbkj A,B ∈ GL(n,R)

is a polynomial map in each coordinate and therefore C∞. By Cramer’s rule, we
have for inverse map:

(A−1)ij =
1

detA
AdjA AdjA := transpose of the matrix of cofactors

The coordinates of AdjA are polynomial functions in the coordinates of A, so the
inverse map is C∞ function provided that detA 6= 0, which is guaranteed by the
definition of GL(n,R). Thus, GL(n,R) is a Lie group.

We can also think of GLnR as the group of automorphisms of an n-dimensional
real vector space V , in which case we write GL(V ) or simply Aut(V ) instead of
GLnR. Of course we define the representation of a Lie group to be a smooth group
homomorphism ρ : G→ GL(V ).

4. Lie Algebras

We want to study these representations of Lie groups. Naturally, our investi-
gation is going to center around homomorphisms. We begin with a motivating
fact.

Fact 4.1. Let G be a connected Lie group, and U ⊂ G be a neighborhood of the
identity. U generates G.

This means that any map ρ : G → H between connected Lie groups G,H may
be determined by its germ at e ∈ G. In fact, we will see that

Fact 4.2. Let G and H be Lie groups with G connected. A map3 ρ : G → H is
uniquely determined by its differential dρe : TeG→ TeH at the identity.

2If this is not clear, see Appendix B.
3We will say map or morphism to mean a C∞ group homomorphism.
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Given this fact, the question arises: which maps between these two vector spaces
actually arise as differentials of group homomorphisms? The answer, as we will see
by the end of this section is as follows:

Fact 4.3. A linear map TeG→ TeH is the differential of a homomorphism ρ : G→
H iff it preserves the bilinear structure dρe([X,Y ]) = [dρe(X), dρe(Y )]

The brackets are called Lie brackets, and are fundamental to the definition of Lie
Algebras. The condition is (as of yet) unmotivated, poorly defined, and mysterious;
by the end of the section, however, it should feel inevitable.

We begin by noticing that a Lie group homomorphism respects the action of a
group on itself. First, a definition.

A Lie group homomorphism ρ : G→ H is a C∞ map that satisfies

ρ(gh) = ρ(g) · ρ(h)

for all g, h ∈ G. This can be represented diagrammatically as follows:

G×G
ρ

//

·
��

H ×H

·
��

G ρ
// H

We can of course view G × G as a group action. Merely let one of the Gs be a
set and the group acts on itself by either left or right multiplication, accordingly.
We therefore say that a homomorphism respects the action of a group on itself by
left or right multiplication. We will make the diagram above a little fancier by
explicitly defining a function for this group action.

Let
mg : G→ G

be the differentiable map given by multiplication by any g ∈ G. We then say that
a Lie group map ρ : G→ H will be a homomorphism if the diagram

G
ρ

//

mg

��

H

mρ(g)

��

G ρ
// H

commutes.
The diagram asserts that it doesn’t matter if you perform the group action before

or after the mapping is applied, which is of course what the previous diagram showed
as well! Since we are working towards the differential of a group homomorphism,
defining an explicit mapping was a natural thing to do. The natural question to
ask now, then, is: should we take the differential?

Unfortunately, no, because it’s not clear where we would take the differential
since mg leaves no fixed points. Happily, this situation is easily resolved by consid-
ering the automorphisms of G given by conjugation. We define

Ψg : G→ G, h 7→ g · h · g−1

for g, h ∈ G.
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Of course Ψg fixes the identity element e ∈ G, and is an action respected by
homomorphisms, which is to say that the diagram

G
ρ

//

Ψg

��

H

Ψρ(g)

��

G ρ
// H

commutes.
So we are now in a position to look at the differential of the map Ψ at e, which

will give
(dΨg)e : TeG→ TeG

We denote this map Ad(g), and call it the adjoint representation of the group.
Since Ψg was a map from G to the automorphisms of G (given by conjugation) we
think of Ad as a map from g to the automorphisms of TeG, or as a representation
of the group G on its tangent space TeG:

Ad : G→ Aut(TeG)

Ad gives the commutative diagram

TeG
(dρ)e

//

Ad(g)

��

TeH

Ad(ρ(g))

��

TeG
(dρ)e

// TeH

which asserts that a homomorphism respects the adjoint action of a group on its
tangent space at the identity, which is to say that

dρ(Ad(g)(v)) = Ad(ρ(g))(dρ(v))

for g ∈ G, v ∈ TeG.
This is just a little bit of a problem, since the adjoint representation still involves

the map ρ on the group G. We want a condition that is purely on the differential.
In order to achieve this condition, we will have to modify the Ad function.

Specifically, we will take the differential of the map Ad. The group Aut(TeG) is an
open subset of the vector space End(TeG), and therefore taking the differential of
the map

Ad : G→ Aut(TeG)
at the identity e gives

ad : TeG→ End(TeG)
Like Ad before it, the map ad gives a map from the tangent space to itself and

thus the commutative diagram

TeG
(dρ)e

//

ad(v)

��

TeH

ad(dρ(v))

��

TeG
(dρ)e

// TeH

Notice how things have changed. The Ad operator was an adjoint action of the
group on its tangent space at the identity, the ad operator is an adjoint action of
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the tangent space to the group on its tangent space. Thus, the diagram asserts that
the following equality holds for tangent vectors X,Y ∈ TeG

dρe(ad(X)(Y )) = ad(dρe(X))(dρe(Y ))

which is a condition purely on the differential, as desired.
We can view the image ad(X)(Y ) of a tangent vector Y under the map ad(X)

as a function of the two variables X and Y which gives a bilinear map

TeG× TeG→ TeG.

We use the notation [ , ] to denote this map, and therefore write

[X,Y ] = ad(X)(Y )

for tangent vectors X,Y to G at the identity e. In this new notation, the diagram
above asserts that the equality

dρe([X,Y ]) = [dρe(X), dρe(Y )]

holds.
Let’s turn to the general linear group in order to make things explicit. Its

tangent space is the space of endomorphisms of Rn, and therefore differentiation
is just differentiation of matrices. For tangent vectors X,Y to GLnR at e, let
γ : I → G be an arc with γ(0) = e and γ′(0) = X. We calculate:

[X,Y ] = ad(X)(Y ) =
d

dt

∣∣∣∣
t=0

(Ad(γ(t))(Y )).

Note that Ad(γ(t))(Y ) = γ(t)Y γ(t)−1 and apply the product rule to obtain

= γ(0) · Y · γ(0) + γ(0) · Y · (−γ(0)−1 · γ′(0) · γ(0)−1)
= X · Y − Y ·X

So the bracket operation coincides with the commutator. Two properties fall
out immediately.

(1) The bracket is skew-symmetric:

[X,Y ] = −[Y,X].

(2) The bracket sasifies the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

This leads us, finally, to our (natural!) definition of a Lie algebra:

Definition 4.4. A lie algebra g is a vector space together with a skew-symmetric
bilinear map

[ , ] : g× g→ g

that satisfies the Jacobi identity.
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5. Concluding Remarks

The reader may lament that we never justified our motivating facts, and this is
certainly true. In order to prove the assertions that were made at the outset of the
previous section and guided our discussion of Lie algebras, we need to discuss the
exponential mapping, which connects Lie groups and algebras. Certainly, this is the
natural place to proceed next. We consider the exponential mapping to be outside
the scope of this paper, however, because in order to do it justice in context a fair
bit of additional manifold theory would need to be introduced (namely, the idea of
a subgroup of a Lie algebra, and therefore the immersed submanifold), which is not
something that is necessarily desirable given the amount of new vocabulary already
introduced. We therefore refer the reader to the (excellent) Section 8.3 of [1] for a
well motivated discussion of the exponential mapping4.

Appendix A. Multilinear Algebra

The purpose of this section is to establish some essential properties of tensor
products, and exterior and symmetric powers. The discussion is essentially an
exposition of Appendix B in [1], with exposition aided significantly by [4].

We will assume throughout this section that every field has characteristic 0 and
all vector spaces are finite dimensional.

The first thing to do is define a bilinear mapping which is simply an extension
of the notion of linear mapping to two variables

Definition A.1 (Bilinear Mapping). We say that a mapping

ϕ : E × F → G

is bilinear if it satisfies

ϕ(λx1 + µx2, y) = λϕ(x1, y) + µϕ(x2, y)

ϕ(x, λy1 + µy2) = λϕ(x, y1) + µϕ(x, y2)

where E,F,G are linear spaces over some field Γ, and xn ∈ E, yn ∈ F and λ, µ ∈ Γ.

A bilinear mapping is a two-space instance of a (more general) multilinear map-
ping. A multilinear mapping, of course, is linear in each of its variables while the
others are held constant. From now on we will use the idea of a multilinear and
bilinear mappings without comment.

Definition A.2 (Tensor Product). Let ϕ : E × F → G be a bilinear mapping.
The pair (G,ϕ) is called a tensor product for E and F if, given any bilinear
mapping ψ : E×F → H there exists a unique linear mapping f : G→ H such that
ψ = f ◦ ϕ.

Diagrammatically, the definition states that any diagram of the form

E × F
ψ

//

ϕ

��

H

G

4Alternatively, I also have a (rough) writeup available upon request.
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can always be completed by some unique f such that

E × F
ψ

//

ϕ

��

H

G

f
;;

commutes.
Note that a tensor product is a pair (G,ϕ). That is, a tensor product is a vector

space equipped with a bilinear map. We write the vector space G ≡ E⊗F , and the
canonical bilinear map ϕ(x, y) ≡ x⊗ y. We will often refer to a tensor product by
its vector space E ⊗ F , but the reader should keep in mind that we are implicitly
asserting the existence of the canonical bilinear map as well.

In this notation, the definition given above says that a tensor product E ⊗ F
satisfies the diagram:

E × F
ψ

//

⊗
��

H

E ⊗ F

f
;;

Where
E × F → E ⊗ F, x× y 7→ x⊗ y

It follows that if {αi} and {βj} are bases for E and F , the elements {αi⊗βj} form
a basis for the tensor product E⊗F . We therefore have dim(E⊗F ) = dimE ·dimF .

The construction of tensor products is commutative:

E ⊗ F ∼= F ⊗ E

distributive:
(E1 ⊕ E2)⊗ F ∼= (E1 ⊗ F )⊕ (E2 ⊗ F ),

and associative:

(D ⊗ E)⊗ F ∼= D ⊗ (E ⊗ F ) ∼= D ⊗ E ⊗ F

We denote a tensor power of a fixed space V :

V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

This is sufficient discussion of the tensor product for the time being. We move
toward external powers by introducing the idea of a skew symmetric mapping.

Definition A.3 (Skew symmetric mapping). Let ϕ be a p-linear mapping of E × · · · × E︸ ︷︷ ︸
p

into F . Any permutation σ will determine some other p-linear mapping σϕ given
by

σϕ(x, · · · , xp) = ϕ(xσ(1), · · · , xσ(p))

A p-linear mapping is called skew symmetric iff

σϕ =
{
ϕ if the permutation is even
−ϕ if the permutation is odd

A number of equivalent properties of skew-symmetric mappings ϕ fall out easily:
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(1) For any permutation σ,
τϕ = −ϕ

since transposition is an odd permutation.
(2) ϕ is alternating. That is,

ϕ(x1, · · · , xp) = 0 ⇐⇒ xi = xj for at least one pair i 6= j.

(3) For any permutation σ,

ϕ(xσ(1), · · · , xσ(p)) = sgn(σ)ϕ(x1, · · ·xp)

Definition A.4 (Symmetric mapping). Let E and F be vector spaces and let ϕ :
E × · · · × E︸ ︷︷ ︸

p

→ F be a p-linear mapping. Then ϕ is called symmetric if ϕ = σϕ for

every permutation σ.

The idea of skew-symmetric and symmetric mappings will play a prominent role
as we move to exterior and symmetric powers.

Definition A.5 (Exterior powers of a vector space). Let E be an arbitrary vector
space and p ≥ 2 be an integer. A vector space

∧p
E together with a p-linear skew-

symmetric map
∧p : E × · · · × E → ∧pE,

is called a p-th exterior power of E if, given any skew symmetric p-linear mapping
ψ : E × · · · × E → F , there exists a unique linear mapping f : ∧pE → F such that
ψ = f ◦ ∧p.

Diagrammatically, the definition gives a commutative diagram

E × · · · × E
ψ

//

∧p

��

F

∧pE
f

99

where
E × · · · × E → ∧pE, x1 × · · · × xp 7→ x1 ∧ · · · ∧ xp

As with the tensor product, we will denote the exterior powers of a vector space
E by ∧pE, and leave the existence of a p-linear skew-symmetric multilinear map
implicit.

The exterior product can be constructed by considering the space E⊗p and quo-
tienting away the subspace consisting of all x1 ⊗ · · · ⊗ xp with two vectors equal.
More formally:

∧pE = E⊗p/T T = {x1 ⊗ · · · ⊗ xp : xi = xj for some i 6= j}

We denote this projection:
π : E⊗p → ∧pE

giving,
π(x1 ⊗ · · · ⊗ xp) = x1 ∧ · · · ∧ xn

We state without proof that if {ei} is a basis for V , then {ei1 ∧ · · · ∧ eip : i1 <
· · · < ip} is a basis for ∧pE.

We now move to symmetric powers, whose definition should come as no surprise.
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Definition A.6 (Symmetric power). Let E be a vector space and p ≥ 2 be an
integer. A vector space SpE together with a p-linear mapping: Sn : E × · · · ×
E → SpE is called a p-th symmetric power of E if for any symmetric mapping
ψ : E × · · · × E → F , there exists a unique linear mapping f : SpE → F such that
ψ = f ◦ Sp

The definition gives the commutative diagram

E × · · · × E
ψ

//

Sp

��

F

SpE

f

99

where
E × · · · × E → SpE, x1 × · · · × xp 7→ x1 · · · · · xp

As is now standard, we leave the p−linear mapping implicit and denote the
symmetric powers of E by SpE.

The symmetric power can be constructed as the quotient space of E⊗p by the
linear span of expressions of the form

x1 ⊗ · · · ⊗ xp − xσ(1) ⊗ · · · ⊗ xσ(p)

If {ei} is a basis for E, then

{ei1 · ei2 · · · · · eip : i1 ≤ i2 ≤ · · · ≤ ip}

is a basis for SpE.

Appendix B. Manifolds

The purpose of this section is to develop the ideas of tangent space and differential
which play prominent roles in our discussion of Lie algebras.

A topological manifold is just a topological space that looks locally like a piece
of Rn. More formally:

Definition B.1 (Topological manifold). A topological manifold of dimension n is
a Hausdorff, second countable topological space M that is locally homeomorphic to
an open subset of Rn.

The definition is asserting that for any point m ∈M , there is some open neigh-
borhood U of m that is homeomorphic to an open neighborhood V of Rn. This
homeomorphism

ϕ : U → V

is called a chart. We call a collection of charts {Uα, ϕα} that cover M an atlas.
The simplest example of a manifold is, of course, Euclidean space itself. Rn is

covered by a single chart, (Rn, 1Rn) where 1Rn : Rn → Rn denotes the identity
map. We will only be interested in a smooth manifolds, which are manifold having
a maximal atlas and the property that any two charts of the manifold have smooth
transition functions between them.

Definition B.2 (Smooth manifold). A smooth (or C∞) manifold is a topological
manifold M along with an atlas such that:

M = ∪αUα



A BRIEF INTRODUCTION TO THE LIE BRACKET 11

And for all α, β, with Uα ∩ Uβ 6= ∅, the transition map

ϕα,β = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is smooth on Rn.

We will now turn to a very important example. We begin with a familiar fact
from linear algebra:

Fact B.3. The set of n × n real matrices forms a real vector space of dimension
n2. That is:

Rn×n ∼= Rn2

where Rn×n denotes the vector space of all n by n matrices.

Example B.4 (GL(n,R)). The general linear group over R, GL(n,R), is a smooth
manifold. Recall that

GL(n,R) = {A ∈ Rn×n|detA 6= 0}
We know that the determinant

det : Rn×n → R

is continuous, and therefore that det−1{0} is a closed subset of Rn×n. It follows that
det−1{R/{0}} is an open subset of Rn×n. Given fact B.3, we see that GL(n,R)
satisfies definition B.1 and thus is a manifold.

We will now turn to a discussion of tangent vectors and spaces, which is essential
to understand as we proceed to Lie Algebras.

First, we define a germ.

Definition B.5 (Germ). Let two real-valued functions, each defined and differen-
tiable in some neighborhood of a point p of M , be called equivalent if they agree
in a neighborhood of p. The equivalence classes are called germs of differentiable
functions on M at p. We denote the set of these germs C∞p M .

It is straightforward to observe that C∞p M is a ring with the operations of
addition and multiplication, and scalar multiplication by n ∈ R makes C∞p M an
algebra on R.

Definition B.6 (Tangent vector). We define a tangent vector v to be a derivation
of the ring of germs C∞p M

v : C∞p M → R
that satisfies the product rule

v(f · g) = v(f) · g(p) + f(p) · v(g) ∀f, g ∈ C∞p M

We denote the vector space of these derivations Tp(M) and call it the tangent
space to M at p.

We will now discuss the differential, which is the local linear approximation of a
differentiable map between manifolds.

Definition B.7 (Differential). Let f : M → N be a differentiable map between
manifolds, p ∈M, v ∈ TpM, ϕ ∈ C∞f(p). The linear map

dfp : TpM → Tf(p)N,

is called the differential of f at the point p.
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The differential has the properties that we would expect of it.

Remark B.8. The differential of the identity is the identity,

dIdp = IdTpM
And the chain rule holds,

d(g ◦ f)p = dgf(p)◦dfp

for differentiable maps M1
f−→M2

g−→M3.
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