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1. Preface: Stumbling Blocks and the Learning Process

Initially, this topic was a bit intimidating to me. It seemed highly technical at

first, especially to someone inexperienced with binary. However, upon attempting

to piece together information from a couple of different books, the real problem

turned out to be getting varying (and sometimes fraught with typos) notation to

agree, and understanding the reasoning behind each step in the decoding process,

which the authors of these texts tended to gloss over. Though it took me a while

to wrap my mind around, the most important realization was that the things I

was dealing with, these collections of strings of 0’s and 1’s of a certain length,

were groups, and that the codes I was studying were simply subgroups. This made

them seem much more manageable, and instead of seeing the process of coding and

decoding as something utterly unfamiliar, I was then able to apply my knowledge of

concepts like cosets, order, and Lagrange’s Theorem to a new environment, filling

in the gaps in my sources until the basic process of coding theory seemed logical

and believable.

2. Introduction

Coding theory is an important concept in the modern world, since it is used

in the transmission of information by radio, telephone, compact discs, and many

other forms of technology. The term coding theory does not refer to secret codes

or cryptography; it is merely a method of simplifying information (words, for ex-

ample) and putting it in a form that can be easily transmitted and then accurately

reconstituted by a receiver of some sort (generally as strings of digits). For the sake

of simplicity, in this paper I will only discuss binary codes, those that represent
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information by codewords composed of 1’s and 0’s.

The best coding methods are those that are reliable and efficient, that is, they are

able to detect and/or correct as many interference-induced errors as possible, and

they contain as little excess or redundant information as possible.

2.1. An Inefficient Code. An example of a code that is less than ideal is a

repetition code; such a code increases the probability of a word being correctly

decoded by sending each code word many times. Thus, using maximum-likelihood

decoding, i.e., interpreting a received word as the codeword sharing the largest

number of digits with it, the chance of a correct reception increases with every time

a message is repeated (assuming, of course, that the probability of an error-free

transmission is greater than .5). While this method can make for fairly reliable

code, it is extremely inefficient: for a codeword of length n, n−1
n

of the information

sent is redundant!

Using ideas from group theory, we can find much better codes.

3. Linear Codes

A group code is a code (a set of codewords) that is a subgroup of Zn

2 , i.e., the

sum of any two elements in the code is also in the code (we already know that

the inverse of each codeword is in the code since in binary, everything is its own

inverse—for example, (01001) + (01001) = (00000)—and it is also unecessary to

check that 0 is a codeword for the same reason).

An (n, k) linear code over Z2 is a k-dimensional group code that is the null space

of some matrix H ∈ M(n−k)×n(Z2), called a parity-check matrix. It is easy to see

that such a code must be a group code since we know that kernels are subgroups.

3.1. Example of a Linear Code. Let C be the (6,3) linear code whose parity-

check matrix is

H =











0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 0 0 1











Then C consists of codewords in the null space of H:

(000000) (001101) (111000) (110101) (101110) (100011) (010110) (011011)
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4. Coset Decoding: Standard Arrays

When we have a binary linear code, we can use the fact that it is a subgroup of

Zn

2 to decode it. To do this, we construct a standard array, a table made up of a

particular code’s codewords and all cosets of the code in Zn

2 .

The first row of the table contains the codewords. There are 2k codewords, since

the rank of an (n− k)×n parity-check matrix is n− k, so its nullity is k, and there

are 2k unique combinations of these k codewords, since each codeword is its own

inverse. In our example code C, for instance, pick any three linearly independent

codewords, say a, b, and c; the set of all 23 = 8 posible combinations of these code-

words is a, b, c, ab, ac, bc, abc, aa = bb = cc = 0.

The remaining rows of the standard array consists of cosets of C. Lagrange’s The-

orem tells us the number of distinct cosets: since the order of Zn

2 is 2n and the

order of C is 2k, the number of distinct left or right cosets of C in Zn

2 (the two are

equivalent) is 2n−k. Thus, in our example code, there are 26−3 = 8 rows as well.

The first entry of each row is a representative of the least possible Hamming weight

for that row’s coset, i.e., an item with the least number of nonzero components.

These entries are referred to as coset leaders. The remaining entries in a row are

made by adding the coset leader of that row to the codeword heading the column

to which the entry belongs.

4.1. Example of a Standard Array. The standard array for our example code

C is:

000000 001101 111000 110101 101110 100011 010110 011011

100000 101101 011000 010101 001110 000011 110110 111011

010000 011101 100101 100101 111110 110011 000110 001011

011000 000101 110000 111101 100110 101011 011110 010011

000100 001001 111100 110001 101010 100111 010010 011111

000010 001111 111010 110111 101100 100001 010100 011001

000001 001100 111001 110100 101111 100010 010111 011010

100100 101001 011100 010001 001010 000111 110010 111111
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4.2. Coset Decoding: Using a Standard Array. Once we have constructed

a standard array for our code, the process of decoding is quite simple. For any

received word, the actual codeword that was transmitted is given by the codeword

heading the column to which the received word belongs (assuming the least possible

amount of interference has occured).

The reason this is possible is that, in constructing the standard array the way we

have, it is easy to see that any received word has most likely been formed by adding

something of minimum weight (the coset leader heading the row in question) to a

codeword, thus changing it minimally, and working backwards will give the original

message.

4.3. Example of Decoding with a Standard Array. Suppose that some code-

word from our example code C has been transmitted, and we receive the word

011100.

Since the codeword heading the column to which this received word belongs is

111000, we can assume that this is the message we were intended to receive, and

the error that occured during transmission was the addition of the coset leader

100100.

5. Decoding with Syndromes

Using a code’s parity-check matrix H, there is an even simpler way to implement

coset decoding! The syndrome of any word x ∈ Zn

2 is the product Hx. If we write

x as x = c + e, where c ∈ C is a transmitted codeword and e is the transmission

error, we can see that the syndrome of x is equal to the syndrome of the error e.

To see why this is true, we use the fact that Hc = 0 by definition, since c is in the

null space of H, and get:

Hx = H(c + e) = Hc + He = 0 + He = He

Thus, all elements in the same coset of a code or row of its standard array have

the same syndrome: any two vectors x and y are in the same coset if and only if
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x − y ∈ C (by a basic property of cosets), and if x − y ∈ C, then x − y = 0, so

H(x − y) = 0 and Hx = Hy.

Syndrome decoding can also be explained in terms of the First Isomorphism

Theorem. Since our code C is the kernel of the linear map H : Zn

2 −→ Zn−k

2 , there

is an induced isomorphism H̃ : Zn

2/C−̃→Zn−k

2 . When we decode using syndromes,

we are really passing a word through the mapping H (this looks like matrix mul-

tiplication), then mapping the resulting syndrome through the inverse of H̃ and

subtracting the coset leader to get the original codeword; it works because we have

an isomorphism!

We can now construct a decoding table, which lists each coset leader and its

syndrome. For any received word, we can decode it simply by multiplying with

H, matching the result to a coset leader with the same syndrome, and subtracting

(equivalent to adding) this coset leader to get the original codeword.

5.1. Example of Syndrome Decoding. A decoding table for our (6,3) code looks

like:

Syndrome Coset Leader

000 000000

001 100000

101 010000

011 001000

100 000100

110 000010

111 000001

101 100100

Suppose the word x = 111010 is received. Its syndrome is H · x = 110, which

is also the syndrome for the coset leader 000010. Subtracting 000010 from 111010,

we get 111000, which we then can take to be the transmitted codeword. Note that

this is also the codeword heading the column to which 111010 belongs, but much

less work was required to decode it than when making a standard array.
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5.2. Benefits of Syndrome Decoding. Although in our example, the standard

array was fairly simple to construct, it clearly would be impractical in cases where

there are very large numbers of codewords. Since an (n, k) linear code will have 2n

possible received words to be put in a standard array, but only 2n−k cosets, it is

much simpler to merely calculate the syndrome of each coset leader, with the same

result.

References

[1] Thomas W. Judson, Abstract Algebra: Theory and Applications (PWS Publishing Company,

Boston, 1994).

[2] Joseph A. Gallian, Contemporary Abstract Algebra, (Houghton Mifflin Company, Boston,

2006).


