MATHEMATICS 332: ALGEBRA - ASSIGNMENT 4

Reading: Gallian, chapters ...

Problems:

1. Let G be a group. Let $x \in G$ have order n, and let $y \in G$ have order m, where n and m are relatively prime.
(a) Show that if $x y=y x$ then $x y$ has order $n m$.
(b) Show that if $x y \neq y x$ then $x y$ need not have order $m n$.
2. Let G be a group, and let H and K be subgroups. Neither H nor K is assumed to be normal.
(a) Prove that the map

$$
h(H \cap K) \longmapsto h K
$$

is well defined and gives a bijection from $H /(H \cap K)$ to the set of cosets $g K$ contained in $H K$.
(b) Now assume that G is finite. Use part (a) to prove the formula

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

3. Let G be the direct product of two cyclic groups of prime order p. How many subgroups of order p does G have?
4. Let $G=\operatorname{GL}_{n}(\mathbb{R})$, let $H=\operatorname{SL}_{n}(\mathbb{R})$, and let $K=\left\{\lambda I_{n}: \lambda \in \mathbb{R}^{\times}\right\}$. For what n is G the direct product of H and K ?
5. Let a group G be the internal semidirect product of a kernel group K and a complementary group H,

$$
K \triangleleft G, \quad H \cap K=1, \quad H K=G
$$

Prove that every subgroup G_{o} of G that contains K determines a unique subgroup H_{o} of H that is complementary to K in G_{o}, i.e., $H_{o} K=G_{o}$.

