THE SEVENTEENTH ROOT OF UNITY VIA QUADRATICS

1. The Environment

Let p = 17, and let

$$\zeta = \zeta_{17} = e^{2\pi i/17}.$$

The field $\mathbb{Z}/17\mathbb{Z}$ has multiplicative group

 $G = (\mathbb{Z}/17\mathbb{Z})^{\times} = \langle 3 \rangle = \{1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6\}.$

Consequently the automorphism

 $\sigma: \mathbb{Q}(\zeta_{17}) \longrightarrow \mathbb{Q}(\zeta_{17}), \quad \zeta \longmapsto \zeta^3$

has order 16. The subgroups of the cyclic group $\langle \sigma \rangle$ are

$$\begin{split} &\langle \sigma: \zeta \longmapsto \zeta^3 \rangle, & \text{of order 16}, \\ &\langle \sigma^2: \zeta \longmapsto \zeta^9 \rangle, & \text{of order 8}, \\ &\langle \sigma^4: \zeta \longmapsto \zeta^{13} \rangle, & \text{of order 4}, \\ &\langle \sigma^8: \zeta \longmapsto \zeta^{16} \rangle, & \text{of order 2}, \\ &\langle \sigma^{16} = 1 \rangle, & \text{of order 1}. \end{split}$$

Corresponding to the chain of subgroups there is a tower of fields

$$\begin{array}{cccc} \mathbb{Q}(\zeta) & & 1 \\ k_3 & & \langle \sigma^8 \rangle \\ k_2 & & \langle \sigma^4 \rangle \\ k_1 & & \langle \sigma^2 \rangle \\ \mathbb{Q} & & \langle \sigma \rangle \end{array}$$

Following Gauss, this writeup shows how to compute ζ by a succession of square roots, by successively constructing the fields on the left side of the diagram.

2. Constructing the First Extension Field

Let

$$r_1 = \zeta + \zeta^{\sigma^2} + \zeta^{\sigma^4} + \zeta^{\sigma^6} + \zeta^{\sigma^8} + \zeta^{\sigma^{10}} + \zeta^{\sigma^{12}} + \zeta^{\sigma^{14}}.$$

Then r_1 is σ^2 -invariant but not σ -invariant, so that the quadratic polynomial

$$f_1(X) = (X - r_1)(X - r_1^{\sigma})$$

is σ -invariant. That is,

$$f_1(X) = X^2 + b_1 X + c_1 \in \mathbb{Q}[X],$$

where

$$b_1 = -r_1 - r_1^{\sigma} = -\sum_{j=1}^{16} \zeta^{\sigma^j} = -\sum_{j=1}^{16} \zeta^j = 1,$$

and

$$c_1 = r_1 r_1^{\sigma}.$$

Although c_1 can be computed directly by hand, proceed instead by defining a quadratic character of G, a homomorphism of G whose square is the trivial homomorphism,

$$\chi: G \longrightarrow \{\pm 1\}, \quad \chi(3^e) = (-1)^e.$$

The Gauss sum associated to ζ and χ is

$$\tau = \sum_{j \in G} \chi(j) \zeta^j,$$

or,

$$\tau = \zeta + \zeta^{\sigma^{2}} + \zeta^{\sigma^{4}} + \zeta^{\sigma^{6}} + \zeta^{\sigma^{8}} + \zeta^{\sigma^{10}} + \zeta^{\sigma^{12}} + \zeta^{\sigma^{14}} - \zeta^{\sigma} - \zeta^{\sigma^{3}} - \zeta^{\sigma^{5}} - \zeta^{\sigma^{7}} - \zeta^{\sigma^{9}} - \zeta^{\sigma^{11}} - \zeta^{\sigma^{13}} - \zeta^{\sigma^{15}}.$$

Thus

$$r_1 - r_1^{\sigma} = \tau, \qquad r_1 + r_1^{\sigma} = -1,$$

so that

$$r_1 = \frac{\tau - 1}{2}, \qquad r_1^\sigma = -\frac{\tau + 1}{2},$$

and consequently

$$r_1 r_1^{\sigma} = -\frac{\tau^2 - 1}{4}.$$

The Gauss sum is symmetrized so that its square is easy to compute,

$$\begin{split} \tau_1^2 &= \sum_{j \in G} \sum_{k \in G} \chi(jk) \zeta^{j+k} \\ &= \sum_{j \in G} \sum_{k \in G} \chi(j^2k) \zeta^{j(1+k)} \quad \text{replacing } k \text{ by } jk \\ &= \sum_{k \in G} \chi(k) \sum_{j \in G} \zeta^{(1+k)j} \quad \text{ by the properties of } \chi \\ &= 16 \chi(-1) - \sum_{k \neq -1} \chi(k) \quad \text{ evaluating the geometric inner sum} \\ &= 17 \qquad \qquad \text{since } \chi(-1) = 1 \text{ and } \sum_{k \in G} \chi(k) = 0. \end{split}$$

It follows that

$$r_1 r_1^{\sigma} = -\frac{17-1}{4} = -4.$$

In sum, the polynomial

$$f_1(X) = X^2 + X - 4 \in \mathbb{Q}[X]$$

has roots

$$r_1 = \frac{-1 + \sqrt{17}}{2}, \qquad r_1^{\sigma} = \frac{-1 - \sqrt{17}}{2}.$$

 $\mathbf{2}$

(Since

$$\begin{split} r_1 &= \zeta + \zeta^9 + \zeta^{13} + \zeta^{15} + \zeta^{16} + \zeta^8 + \zeta^4 + \zeta^2 \\ r_1^\sigma &= \zeta^3 + \zeta^{10} + \zeta^5 + \zeta^{11} + \zeta^{14} + \zeta^7 + \zeta^{12} + \zeta^6, \end{split}$$

comparing which powers of ζ occur in r and in r^{σ} shows that r lies farther to the right.) Thus we have climbed the first step up the tower of fields corresponding to the subgroup of the Galois group,

Since $r_1 + r_1^{\sigma} = -1$, the field $\mathbb{Q}(r_1)$ is in fact $\mathbb{Q}(r_1, r_1^{\sigma})$.

3. Constructing the Second Extension Field

Let

$$r_2 = \zeta + \zeta^{\sigma^4} + \zeta^{\sigma^8} + \zeta^{\sigma^{12}}.$$

Then r_2 is σ^4 -invariant but not σ^2 -invariant, so that the quadratic polynomial

$$f_2(X) = (X - r_2)(X - r_2^{\sigma^2})$$

is σ^2 -invariant. That is,

$$f_2(X) = X^2 + b_2 X + c_2 \in \mathbb{Q}(r_1)[X],$$

where

and

$$b_2 = -r_2 - r_2^{\sigma^2} = -r_1,$$

 $c_2 = r_2 r_2^{\sigma^2}.$

Compute that

$$r_2 = \zeta + \zeta^4 + \zeta^{13} + \zeta^{16} = 2(\cos(2\pi/17) + \cos(8\pi/17)),$$

$$r_2^{\sigma^2} = \zeta^2 + \zeta^8 + \zeta^9 + \zeta^{15} = 2(\cos(4\pi/17) + \cos(16\pi/17)).$$

Thus

$$\frac{1}{4}r_2r_2^{\sigma^2} = \cos(2\pi/17)\cos(4\pi/17) + \cos(2\pi/17)\cos(16\pi/17) + \cos(8\pi/17)\cos(4\pi/17) + \cos(8\pi/17)\cos(16\pi/17),$$

and so the trigonometry identity $2\cos a \cos b = \cos(a+b) + \cos(a-b)$ gives

$$\frac{1}{2}r_2r_2^{\sigma^2} = \cos(6\pi/17) + \cos(2\pi/17) + \cos(16\pi/17) + \cos(14\pi/17) + \cos(12\pi/17) + \cos(4\pi/17) + \cos(10\pi/17) + \cos(8\pi/17) = -1/2.$$

In sum, the polynomial

$$f_2(X) = X^2 - r_1 X - 1 \in \mathbb{Q}(r_1)[X]$$

has roots

$$r_2 = \frac{r_1 + \sqrt{r_1^2 + 4}}{2}, \qquad r_2^{\sigma^2} = \frac{r_1 - \sqrt{r_1^2 + 4}}{2}.$$

(Again it is easy to see which is larger.)

Since $r_2 + r_2^{\sigma} = r_1$, our choice for the second field can be written in abbreviated form, naturally containing the other polynomial roots as well,

$$k_2 = \mathbb{Q}(r_1, r_2) = \mathbb{Q}(r_1, r_1^{\sigma}, r_2, r_2^{\sigma^2})$$

We have not yet considered another pair of σ^4 -invariants that are exchanged by σ^2 ,

$$\begin{split} r_2^{\sigma} &= \zeta^3 + \zeta^5 + \zeta^{12} + \zeta^{14}, \\ r_2^{\sigma^3} &= \zeta^6 + \zeta^7 + \zeta^{10} + \zeta^{11}. \end{split}$$

They satisfy the quadratic polynomial

$$f_2^{\sigma}(X) = X^2 - r_1^{\sigma}X - 1.$$

However, r_2^{σ} and $r_2^{\sigma^2}$ can be expressed in terms of r_1 and r_2 . Since $r_2^{\sigma} + r_2^{\sigma^2} = r_1^{\sigma} = -1 - r_1$, it suffices to consider r_2^{σ} . To see this, compute (skipping many steps) that

$$r_1 r_2 = 2 - r_2 + r_2^{\sigma} - r_2^{\sigma^3} = 3 - r_2 + 2r_2^{\sigma} + r_1,$$

so that

$$2r_2^{\sigma} = r_1r_2 - r_1 + r_2 - 3.$$

(Of course we also have the formulas

$$r_2^{\sigma} = \frac{r_1^{\sigma} + \sqrt{(r_1^{\sigma})^2 + 4}}{2}, \qquad r_2^{\sigma^3} = \frac{r_1^{\sigma} - \sqrt{(r_1^{\sigma})^2 + 4}}{2},$$

but besides costing us another square root computationally, the formulas don't show that r_2^{σ} and $r_2^{\sigma^3}$ lie in the field generated by r_1 and r_2 .) Now we have climbed the second step up the tower of fields,

$$\mathbb{Q}(\zeta) \quad \mathbf{1} \\
k_3 \quad \langle \sigma^8 \rangle \\
\mathbb{Q}(r_1, r_2) \quad \langle \sigma^4 \rangle \\
\mathbb{Q}(r_1) \quad \langle \sigma^2 \rangle \\
\mathbb{Q} \quad \langle \sigma \rangle$$

And here the new field is in fact $\mathbb{Q}(r_1, r_1^{\sigma}, r_2, r_2^{\sigma}, r_2^{\sigma^2}, r_2^{\sigma^3})$.

4. Constructing the Third Extension Field

Let

$$r_3 = \zeta + \zeta^{\sigma^8}.$$

Then r_3 is σ^8 -invariant but not σ^4 -invariant, so that the quadratic polynomial

$$f_3(X) = (X - r_3)(X - r_3^{\sigma^4})$$

is σ^4 -invariant. That is,

$$f_3(X) = X^2 + b_3 X + c_3 \in \mathbb{Q}(r_1, r_2)[X],$$

where

$$b_3 = -r_3 - r_3^{\sigma^4} = -r_2,$$

and

$$c_3 = r_3 r_3^{\sigma^4} = (\zeta + \zeta^{16})(\zeta^4 + \zeta^{13}) = \zeta^3 + \zeta^5 + \zeta^{12} + \zeta^{14} = r_2^{\sigma}.$$

In sum, the polynomial

$$f_3(X) = X^2 - r_2 X + r_2^{\sigma} \in \mathbb{Q}(r_1, r_2)[X]$$

has roots

$$r_3 = \frac{r_2 + \sqrt{r_2^2 - 4r_2^{\sigma}}}{2}, \qquad r_3^{\sigma^4} = \frac{r_2 - \sqrt{r_2^2 - 4r_2^{\sigma}}}{2}$$

(again it is easy to see which is larger). We have climbed the third step,

$$\mathbb{Q}(\zeta) \quad 1$$

$$\mathbb{Q}(r_1, r_2, r_3) \quad \langle \sigma^8 \rangle$$

$$\mathbb{Q}(r_1, r_2) \quad \langle \sigma^4 \rangle$$

$$\mathbb{Q}(r_1) \quad \langle \sigma^2 \rangle$$

$$\mathbb{Q} \quad \langle \sigma \rangle$$

5. The Endgame

Finally, ζ and $\zeta^{\sigma^8} = \zeta^{-1}$ satisfy the polynomial $f_4(X) = X^2 - r_3 X + 1.$

Specifically,

$$\zeta = \frac{r_3 + \sqrt{r_3^2 - 4}}{2}, \qquad \zeta^{-1} = \frac{r_3 - \sqrt{r_3^2 - 4}}{2}.$$

Only at this last step do we take an imaginary square root. In sum, we consecutively compute

$$r_{1} = \frac{-1 + \sqrt{17}}{2},$$

$$r_{2} = \frac{r_{1} + \sqrt{r_{1}^{2} + 4}}{2},$$

$$r_{3} = \frac{r_{2} + \sqrt{r_{2}^{2} - 4r_{2}^{\sigma}}}{2},$$

$$\zeta_{17} = \frac{r_{3} + \sqrt{r_{3}^{2} - 4}}{2}.$$

,