MATHEMATICS 332: ALGEBRA - ASSIGNMENT C-H

Reading: Cayley-Hamilton handout.

Problems:

1. Let A be a commutative ring with 1 . Let M and N be commutative A algebras. Explain how to give the tensor product $M \otimes_{A} N$ the structure of a commutative A-algebra. What issues need to be checked before we know that the process is sensible?
2. Using the notation of the handout, there is an isomorphism

$$
\bigwedge_{k[x]}^{d} M=\bigwedge_{k[x]}^{d}\left(k[x] \otimes_{k} V\right) \approx k[x] \otimes_{k} \bigwedge_{k}^{d} V
$$

How does the d th exterior power of the action of the ring $R=k[x] \otimes_{k} k[T]$ on M correspondingly transform into an action of R on $k[x] \otimes_{k} \bigwedge_{k}^{d} V$?
3. The handout argues rather quickly that $y^{\text {adg }}$ commutes with all of $R^{\wedge 1}$. Supply details as necessary.
4. The handout's display

$$
f(x) \otimes 1_{V}+I=\sum a_{i}\left(x \otimes 1_{V}\right)^{i}+I=\sum a_{i}(1 \otimes T)^{i}+I=1 \otimes f(T)+I
$$

is missing at least two steps. Provide them.
5. Explain the isomorphisms in the display

$$
M / I M=\left(k[x] \otimes_{k} V\right) /\left(x \otimes 1_{V}-1 \otimes T\right)\left(k[x] \otimes_{k} V\right) \approx 1 \otimes_{k} V \approx V
$$

6. Look up the coordinate-version of the tensor product of matrices. Then, for

$$
A=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

write the 4 -by- 4 matix $A \otimes I_{2}-I_{2} \otimes A$.

