MATHEMATICS 332: ALGEBRA — SOLUTION TO RIGHT-ADJOINT EXERCISE

Let A and B be rings-with-1, and let $\alpha : A \longrightarrow B$ be a ring homomorphism such that $\alpha(1_A) = 1_B$. The hom-group functor from A-modules to B-modules is

$$N \longmapsto \operatorname{Hom}_A(B, N),$$

where the *B*-module structure of $\text{Hom}_A(B, N)$ is that for $b \in B$, $f \in \text{Hom}_A(B, N)$,

$$(bf)(x) = f(xb)$$
 for all $x \in B$.

For maps, the functor is composition. That is, if $g: N \longrightarrow N'$ is an A-module map then its induced map is postcomposition,

$$g \circ -: \operatorname{Hom}_A(B, N) \longrightarrow \operatorname{Hom}_A(B, N'), \quad f \longmapsto g \circ f.$$

Prove that hom-group formation is a right-adjoint of restriction, is natural in M, and is natural in N.

Proof. For the right-adjointness, define

$$i_{M,N}$$
: Hom_B(M, Hom_A(B, N)) \longrightarrow Hom_A(Res^B_AM, N)

by the formula

$$(i_{M,N}\Phi)(m) = (\Phi(m))(1_B), \quad m \in M,$$

and define

$$j_{M,N} : \operatorname{Hom}_A(\operatorname{Res}^B_A M, N) \longrightarrow \operatorname{Hom}_B(M, \operatorname{Hom}_A(B, N))$$

by the formula

$$(j_{M,N}\phi)(m) = (b \longmapsto \phi(bm)), \quad b \in B, \ m \in M$$

Then i and j are readily seen to be abelian group homomorphisms, and (all the symbols meaning what they must)

$$(ji\Phi)(m) = (b \longmapsto \square) \quad \text{by definition of } j$$
$$= (b \longmapsto \square) \quad \text{by definition of } i$$
$$= (b \longmapsto \square) \quad \text{since } \Phi \text{ is } B\text{-linear}$$
$$= (b \longmapsto \square) \quad \text{by the } B\text{-module structure of } \text{Hom}_A(B, N)$$
$$= (b \longmapsto (\Phi(m))(b)),$$

showing that $(ji\Phi)(m) = \Phi(m)$ for all m, i.e., $ji\Phi = \Phi$. Also,

$$(ij\phi)(m) =$$
by definition of i
$$= (b \mapsto)()$$
by definition of j
$$= \phi(m),$$

showing that $ij\phi = \phi$. Thus $i_{M,N}$ is an isomorphism.

MATHEMATICS 332: ALGEBRA — SOLUTION TO RIGHT-ADJOINT EXERCISE

 $\mathbf{2}$

Naturality in M means that for every B-module map $f: M' \longrightarrow M$ and every A-module N, the following diagram commutes:

Consider any *B*-linear $\Phi: M \longrightarrow \operatorname{Hom}_A(B, N)$. Taking it across the top of the diagram gives

$$i_{M,N}\Phi:m\longmapsto$$

and taking this down the right side of the diagram gives in turn

$$i_{M,N}\Phi \circ \operatorname{Res}_A^B f: m' \longmapsto$$
 .

On the other hand, taking Φ down the left side of the diagram gives $\Phi \circ f$, which is taken across the bottom of the diagram to the same thing as a moment ago but with the symbols regrouped,

$$i_{M',N}(\Phi \circ f): m' \longmapsto$$
 .

Finally, naturality in N means that for every B-module M and every A-module map $g: N \longrightarrow N'$, the following diagram commutes:

Consider any *B*-linear $\Phi: M \longrightarrow \operatorname{Hom}_A(B, N)$. Taking it across the top of the diagram and then down the right side gives

$$\operatorname{Res}_{A}^{B}g \circ i_{M,N}\Phi : m \longmapsto$$

On the other hand, taking it down the left side of the diagram and across the bottom gives the same thing but with the symbols regrouped,

$$i_{M,N'}(g \circ \Phi) : m \longmapsto$$
 .