MATHEMATICS 332: ALGEBRA - SOLUTION TO RIGHT-ADJOINT EXERCISE

Let A and B be rings-with- 1 , and let $\alpha: A \longrightarrow B$ be a ring homomorphism such that $\alpha\left(1_{A}\right)=1_{B}$. The hom-group functor from A-modules to B-modules is

$$
N \longmapsto \operatorname{Hom}_{A}(B, N)
$$

where the B-module structure of $\operatorname{Hom}_{A}(B, N)$ is that for $b \in B, f \in \operatorname{Hom}_{A}(B, N)$,

$$
(b f)(x)=f(x b) \quad \text { for all } x \in B
$$

For maps, the functor is composition. That is, if $g: N \longrightarrow N^{\prime}$ is an A-module map then its induced map is postcomposition,

$$
g \circ-: \operatorname{Hom}_{A}(B, N) \longrightarrow \operatorname{Hom}_{A}\left(B, N^{\prime}\right), \quad f \longmapsto g \circ f
$$

Prove that hom-group formation is a right-adjoint of restriction, is natural in M, and is natural in N.

Proof. For the right-adjointness, define

$$
i_{M, N}: \operatorname{Hom}_{B}\left(M, \operatorname{Hom}_{A}(B, N)\right) \longrightarrow \operatorname{Hom}_{A}\left(\operatorname{Res}_{A}^{B} M, N\right)
$$

by the formula

$$
\left(i_{M, N} \Phi\right)(m)=(\Phi(m))\left(1_{B}\right), \quad m \in M
$$

and define

$$
j_{M, N}: \operatorname{Hom}_{A}\left(\operatorname{Res}_{A}^{B} M, N\right) \longrightarrow \operatorname{Hom}_{B}\left(M, \operatorname{Hom}_{A}(B, N)\right)
$$

by the formula

$$
\left(j_{M, N} \phi\right)(m)=(b \longmapsto \phi(b m)), \quad b \in B, m \in M
$$

Then i and j are readily seen to be abelian group homomorphisms, and (all the symbols meaning what they must)

$$
\begin{aligned}
(j i \Phi)(m) & =(b \longmapsto \square) \quad \begin{array}{l}
\text { by definition of } j \\
\\
\\
=(b \longmapsto) \quad \text { by definition of } i \\
\\
\end{array}=(b \longmapsto \square) \quad \text { since } \Phi \text { is } B \text {-linear } \\
& =\left(b \longmapsto \square \text { by the } B \text {-module structure of } \operatorname{Hom}_{A}(B, N)\right. \\
& =(b \longmapsto(\Phi(m))(b)),
\end{aligned}
$$

showing that $(j i \Phi)(m)=\Phi(m)$ for all m, i.e., $j i \Phi=\Phi$. Also,

$$
\begin{array}{rlrl}
(i j \phi)(m) & =\square & & \text { by definition of } i \\
& =(b \longmapsto \square)(\square) & \text { by definition of } j \\
& =\phi(m), & &
\end{array}
$$

showing that $i j \phi=\phi$. Thus $i_{M, N}$ is an isomorphism.

Naturality in M means that for every B-module map $f: M^{\prime} \longrightarrow M$ and every A-module N, the following diagram commutes:

Consider any B-linear $\Phi: M \longrightarrow \operatorname{Hom}_{A}(B, N)$. Taking it across the top of the diagram gives

$$
i_{M, N} \Phi: m \longmapsto \square
$$

and taking this down the right side of the diagram gives in turn

$$
i_{M, N} \Phi \circ \operatorname{Res}_{A}^{B} f: m^{\prime} \longmapsto \square .
$$

On the other hand, taking Φ down the left side of the diagram gives $\Phi \circ f$, which is taken across the bottom of the diagram to the same thing as a moment ago but with the symbols regrouped,

$$
i_{M^{\prime}, N}(\Phi \circ f): m^{\prime} \longmapsto \square .
$$

Finally, naturality in N means that for every B-module M and every A-module map $g: N \longrightarrow N^{\prime}$, the following diagram commutes:

Consider any B-linear $\Phi: M \longrightarrow \operatorname{Hom}_{A}(B, N)$. Taking it across the top of the diagram and then down the right side gives

$$
\operatorname{Res}_{A}^{B} g \circ i_{M, N} \Phi: m \longmapsto \square .
$$

On the other hand, taking it down the left side of the diagram and across the bottom gives the same thing but with the symbols regrouped,

$$
i_{M, N^{\prime}}(g \circ \Phi): m \longmapsto \square .
$$

