CANONICAL FORMS IN LINEAR ALGEBRA

Let k be a field, let V be a finite-dimensional vector space over k, and let

$$
T: V \longrightarrow V
$$

be an endomorphism. Linear algebra teaches us, laboriously, that T has a rational canonical form and (if k is algebraically closed) a Jordan canonical form. This writeup shows that both forms follow quickly and naturally from the structure theorem for modules over a PID.

1. The Module Associated to T

Since k is a field, the polynomial ring $k[X]$ is a PID. Give V the structure of a $k[X]$-module by defining

$$
f(X) \cdot v=f(T) v, \quad f(X) \in k[X]
$$

Especially, X acts as T. The structure theorem for modules over a PID says that

$$
V \approx \frac{k[X]}{\left\langle f_{1}(X)\right\rangle} \oplus \cdots \oplus \frac{k[X]}{\left\langle f_{m}(X)\right\rangle}, \quad f_{1}(X)|\cdots| f_{m}(X)
$$

That is, $V=\bigoplus_{i} V_{i}$, where for each i there is an isomorphism

$$
k[X] /\left\langle f_{i}(X)\right\rangle \longrightarrow V_{i}
$$

that intertwines the action of $k[X]$ on itself and the action of $k[T]$ on V_{i}. Thus for each polynomial $g(X)$ with $\operatorname{deg}(g)<\operatorname{deg}\left(f_{i}\right)$ there exists a unique $v \in V_{i}$ so that the following square commutes,

In particular, the unique vector $v_{i} \in V_{i}$ corresponding to $g(X)=1$ in the diagram has the property

$$
X^{j}+\left\langle f_{i}(X)\right\rangle \longmapsto T^{j} v_{i} \quad \text { for } j=0,1,2, \ldots
$$

Let $d_{i}=\operatorname{deg}\left(f_{i}\right)$. Since $\left\{1, X, X^{2}, \ldots, X^{d_{i}-1}\right\}$ is a canonical basis of $k[X] /\left\langle f_{i}(X)\right\rangle$ (now writing representatives rather than cosets for tidiness), correspondingly

$$
\left\{v_{i}, T v_{i}, T^{2} v_{i}, \ldots, T^{d_{i}-1} v_{i}\right\} \quad \text { is a canonical basis of } V_{i} \text {. }
$$

That is, courtesy of the modules over a PID structure theorem, T acts as multiplication by X in "polynomial coordinates," and so V_{i} has a canonical cyclic basis generated by a vector v_{i} and its images under iterates of T. This is the crux of everything to follow.

2. Rational Canonical Form

To obtain the rational canonical form of T, let each f_{i} have degree d_{i}. More specifically,

$$
f_{i}(X)=a_{0, i}+a_{1, i} X+a_{2, i} X^{2}+\cdots+a_{d_{i}-1, i} X^{d_{i}-1}+X^{d_{i}}
$$

A basis for the i th summand $k[X] /\left\langle f_{i}(X)\right\rangle$ is (again abbreviating cosets to their representatives)

$$
\left\{1, X, X^{2}, \ldots, X^{d_{i}-1}\right\}
$$

As explained a moment ago, the corresponding basis of the summand V_{i} is T-cyclic,

$$
\left\{v_{i}, T v_{i}, T^{2} v_{i}, \ldots, T^{d_{i}-1} v_{i}\right\}
$$

while, because $T^{d_{i}} v_{i}$ corresponds to $X^{d_{i}}$ and $f_{i}(X)=0$ in $k[X] /\left\langle f_{i}(X)\right\rangle$,

$$
T^{d_{i}} v_{i}=-a_{0, i} v_{i}-a_{1, i} T v_{i}-\cdots-a_{d_{i}-1, i} T^{d_{i}-1} v_{i}
$$

And so with respect to this basis, the restriction of T to V_{i} has matrix

$$
A_{i}=\left[\begin{array}{cccccc}
0 & & & & & -a_{0, i} \\
1 & 0 & & & & -a_{1, i} \\
& 1 & 0 & & & -a_{2, i} \\
& & \ddots & \ddots & & \vdots \\
& & & \ddots & \ddots & \vdots \\
& & & & 1 & -a_{d_{i}-1, i}
\end{array}\right] .
$$

Consequently the restriction of T to V_{i} has characteristic polynomial $f_{i}(X)$, as can be seen by expanding $\operatorname{det}\left(X I-A_{i}\right)$ by cofactors across the top row. Thus T has characteristic polynomial $\prod_{i} f_{i}(X)$ and minimal polynomial $f_{m}(X)$.

3. Jordan Canonical Form

To obtain the Jordan canonical form of T, now take k to be algebraically closed. The factorization of each i th elementary divisor polynomial,

$$
f_{i}(X)=\prod_{j=1}^{\ell_{i}}\left(X-\lambda_{i j}\right)^{e_{i j}}
$$

gives a decomposition of the i th polynomial quotient ring,

$$
\frac{k[X]}{\left\langle f_{i}(X)\right\rangle} \approx \frac{k[X]}{\left\langle\left(X-\lambda_{i 1}\right)^{e_{i 1}}\right\rangle} \oplus \cdots \oplus \frac{k[X]}{\left\langle\left(X-\lambda_{i \ell_{i}}\right)^{e_{i i_{i}}}\right\rangle}
$$

and then a corresponding decomposition of the i th cyclic subspace, $V_{i}=\bigoplus_{j} V_{i j}$.
A basis for the (i, j) th summand $k[X] /\left\langle\left(X-\lambda_{i j}\right)^{e_{i j}}\right\rangle$ is (abbreviating cosets)

$$
\left\{1, X-\lambda_{i j},\left(X-\lambda_{i j}\right)^{2}, \ldots,\left(X-\lambda_{i j}\right)^{e_{i j}-1}\right\}
$$

The corresponding basis of $V_{i j}$ is $\left(T-\lambda_{i j}\right)$-cyclic, taking the form

$$
\left\{v_{i j},\left(T-\lambda_{i j}\right) v_{i j},\left(T-\lambda_{i j}\right)^{2} v_{i j}, \ldots,\left(T-\lambda_{i j}\right)^{e_{i j}-1} v_{i j}\right\} .
$$

Fix i and j, and then drop them from the notation. Denote the basis elements in the previous display $v_{0}, v_{1}, \ldots, v_{e-1}$, and let $v_{e}=0$. Then we have in $V_{i j}$,

$$
(T-\lambda) v_{k}=v_{k+1}, \quad k=0, \ldots, e-1,
$$

or

$$
T v_{k}=\lambda v_{k}+v_{k+1}, \quad k=0, \ldots, e-1
$$

The previous display encompasses the relation $T v_{e-1}=\lambda v_{e-1}$ since $v_{e}=0$. Thus with respect to the basis, the restriction of T to $V_{i j}$ has matrix

$$
J_{i, j}=\left[\begin{array}{cccccc}
\lambda & & & & & \\
1 & \lambda & & & & \\
& 1 & \lambda & & & \\
& & \ddots & \ddots & & \\
& & & \ddots & \lambda & \\
& & & & 1 & \lambda
\end{array}\right]
$$

Now let i and j vary. For any $\lambda \in k$, the algebraic multiplicity of λ is the number of times that it repeats as a root of the characteristic polynomial $\prod_{i} f_{i}(X)$; the geometric multiplicity of λ (and the number of λ-blocks in the Jordan form of the endomorphism T) is the number of factors $f_{i}(X)$ of which it is a root; and the size of the i th λ-block is the multiplicity of λ as a root of $f_{i}(X)$.

4. An Example

Let $k=\mathbb{Q}$ and suppose that an endomorphism $T: V \longrightarrow V$ has characteristic polynomial

$$
f(X)=\left(X^{2}-2\right)^{4}
$$

Then the 8-dimensional vector space V over \mathbb{Q} takes one of the following possible forms as a $\mathbb{Q}[X]$-module:

$$
V \approx\left\{\begin{array}{l}
\mathbb{Q}[X] /\left\langle\left(X^{2}-2\right)^{4}\right\rangle, \\
\mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle \oplus \mathbb{Q}[X] /\left\langle\left(X^{2}-2\right)^{3}\right\rangle, \\
\mathbb{Q}[X] /\left\langle\left(X^{2}-2\right)^{2}\right\rangle \oplus \mathbb{Q}[X] /\left\langle\left(X^{2}-2\right)^{2}\right\rangle, \\
\mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle \oplus \mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle \oplus \mathbb{Q}[X] /\left\langle\left(X^{2}-2\right)^{2}\right\rangle, \\
\mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle \oplus \mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle \oplus \mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle \oplus \mathbb{Q}[X] /\left\langle X^{2}-2\right\rangle .
\end{array}\right.
$$

Since

$$
\begin{aligned}
& \left(X^{2}-2\right)^{4}=X^{8}-8 X^{6}+24 X^{4}-32 X^{2}+16 \\
& \left(X^{2}-2\right)^{3}=X^{6}-6 X^{4}+12 X^{2}-8 \\
& \left(X^{2}-2\right)^{2}=X^{4}-4 X^{2}+4
\end{aligned}
$$

the corresponding possible rational canonical forms of T are

and

0	2						
1	0						
		0					8
		1	0				0
			1	0			-12
				1	0		0
				1	0	6	
					1	0	

(having minimal polynomial $\left(X^{2}-2\right)^{3}$),
and
$\left.\begin{array}{|rrrr|rrr|}\hline 0 & & & -4 & & & \\ 1 & 0 & & 0 & & & \\ & 1 & 0 & 4 & & & \\ & & 1 & 0 & & & \\ \hline & & & & 0 & & \\ & & & & 1 & 0 & \\ & & & & & 1 & 0\end{array}\right)$
(having minimal polynomial $\left.\left(X^{2}-2\right)^{2}\right)$,
and

0	2						
1	0						
		0	2				
		1	0				
				0			-4
				1	0		0
					1	0	4
					1	0	

(having minimal polynomial $\left(X^{2}-2\right)^{2}$),
and

0	2				
1	0				
		0	2		
		1	0		
				0	2
			1	0	

(having minimal polynomial $X^{2}-2$).

For the Jordan form of T, consider a base field k that contains $\sqrt{2}$, and view T as an endomorphism of an 8-dimensional vector space \widetilde{V} over k, so that its characteristic polynomial becomes

$$
f(X)=(X-\sqrt{2})^{4}(X+\sqrt{2})^{4}
$$

Then the Jordan canonical form of the part of T associated to $\sqrt{2}$ is one of

$$
\left.\begin{array}{|cccc|}
\hline \sqrt{2} & & & \\
1 & \sqrt{2} & & \\
& 1 & \sqrt{2} & \\
& & 1 & \sqrt{2}
\end{array} \quad \text { (having minimal polynomial }(X-\sqrt{2})^{4}\right)
$$

or

(having minimal polynomial $\left.(X-\sqrt{2})^{3}\right)$,
or

(having minimal polynomial $(X-\sqrt{2})^{2}$),
or

$\sqrt{2}$			
1	$\sqrt{2}$		
		$\sqrt{2}$	
			$\sqrt{2}$

(having minimal polynomial $(X-\sqrt{2})^{2}$),
or

$\sqrt{2}$			
	$\sqrt{2}$		
		$\sqrt{2}$	
			$\sqrt{2}$

Note that the second and third cases have different minimal polynomials and yet the same geometric multiplicity of the eigenvalue $\sqrt{2}$. Note that the third and fourth cases have the same minimal polynomial and yet different geometric multiplicities of the eigenvalue $\sqrt{2}$.

Similarly for the part of T associated to $-\sqrt{2}$. Thus altogether the transformation has 25 possible Jordan forms.

5. Another Example

Let $\operatorname{dim}_{k} V=12$, and let the endomorphism $T: V \longrightarrow V$ have characteristic polynomial $(X-\lambda)^{12}$ where $\lambda \in k$. Suppose we know the following nullities (kernel dimensions):

$$
\begin{aligned}
& \mathcal{N}(T-\lambda I)=5 \\
& \mathcal{N}\left((T-\lambda I)^{2}\right)=9 \\
& \mathcal{N}\left((T-\lambda I)^{3}\right)=11 \\
& \mathcal{N}\left((T-\lambda I)^{4}\right)=12
\end{aligned}
$$

Then the Jordan form of T has five blocks, four $(9-5)$ of which are at least 2 -by- 2 so that one is 1 -by- 1 , two $(11-9)$ of which are at least 3 -by- 3 so that two are

2 -by- 2 , and one $(12-11)$ of which is exactly 4 -by- 4 so that one is 3 -by- 3 . Thus the Jordan form of T is

λ				
	$\begin{array}{ll} \lambda & \\ 1 & \lambda \end{array}$			
		$\begin{array}{ll} \hline \lambda & \\ 1 & \lambda \end{array}$		
			$\begin{array}{ccc} \hline \lambda & & \\ 1 & \lambda & \\ & 1 & \lambda \end{array}$	
				$\begin{array}{cccc} \lambda & & & \\ 1 & \lambda & & \\ & 1 & \lambda & \\ & & 1 & \lambda \end{array}$

