MATHEMATICS 332: ALGEBRA - EXERCISE ON MODULES OVER A PID

Reading: Class handout on modules over a PID

Problem:

Let A be PID. (So, for example, we might have $A=\mathbb{Z}$ or $A=k[X]$ where k is a field.) Let $n \geq 2$ be an integer. Consider any primitive vector in $A^{\oplus n}$,

$$
v=\left(a_{1}, \cdots, a_{n}\right) \in A^{\oplus n}, \quad \operatorname{gcd}\left(a_{1}, \cdots, a_{n}\right)=1
$$

This exercise shows conceptually that v is the first column of an n-by- n matrix M with entries in A having determinant 1.
(a) Consider a nonzero vector $v^{\prime}=\left(a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right) \in A^{\oplus n}$. Show that if $a v^{\prime} \in A v$ for some nonzero $a \in A$ then $v^{\prime} \in A v$.
(b) Consider a free A-module and a submodule,

$$
F=A^{\oplus n}, \quad S=A v .
$$

Use (a) to show that the quotient F / S is torsion-free, meaning that if $q \in F / S$ and $a \in A$ is nonzero and $a q=0_{F / S}$ then $q=0_{F / S}$. (To connect your reasoning clearly to (a), write elements of F / S as cosets, or, better yet, use the natural projection $\operatorname{map} \pi: F \longrightarrow F / S$.)
(c) By the structure theorem for finitely generated modules over a PID, we have a basis $\left(f_{1}, \cdots, f_{n}\right)$ of F and a nonzero ideal $\mathfrak{a}_{1} \subset A$ such that

$$
F=A f_{1} \oplus \cdots \oplus A f_{n}, \quad S=\mathfrak{a}_{1} f_{1}, \quad F / S=\left(A / \mathfrak{a}_{1}\right) f_{1} \oplus A f_{2} \oplus \cdots \oplus A f_{n}
$$

And \mathfrak{a}_{1} anniliates A / \mathfrak{a}_{1}. Combine (b) with the environment described here to explain-with no further reference to elements-why $\mathfrak{a}_{1}=A$. Consequently, we may take $f_{1}=v$.
(d) Thus $A^{\oplus n}$ has a basis $\left(v, f_{2}, \cdots, f_{n}\right)$. And so, letting $\left(e_{1}, \cdots, e_{n}\right)$ denote the standard basis, the A-linear map

$$
T: A^{\oplus n} \longrightarrow A^{\oplus n}, \quad e_{1} \mapsto v, e_{2} \mapsto f_{2}, \cdots, e_{n} \mapsto f_{n}
$$

is an isomorphism, so that consequently $\operatorname{det} T \in A^{\times}$. What is the matrix M of T with respect to the standard basis? Explain why scaling the last column of M by $(\operatorname{det} T)^{-1}$ finishes the problem. (Here is where the condition $n \geq 2$ matters: we are not modifying the given vector v.)

