
THE AXIOM OF CHOICE, ZORN’S LEMMA, AND THE WELL

ORDERING PRINCIPLE

The Axiom of Choice is a foundational statement of set theory:

Given any collection {Si : i ∈ I} of nonempty sets, there exists a
choice function

f : I −→
⋃
i

Si, f(i) ∈ Si for all i ∈ I.

In the 1930’s, Kurt Gödel proved that the Axiom of Choice is consistent (in the
Zermelo-Frankel first-order axiomatization) with the other axioms of set theory. In
the 1960’s, Paul Cohen proved that the Axiom of Choice is independent of the other
axioms.

Closely following Van der Waerden, this writeup explains how the Axiom of
Choice implies two other statements, Zorn’s Lemma and the Well Ordering Prin-
ciple. In fact, all three statements are equivalent, as is a fourth statement called
the Hausdorff Maximality Principle.

1. Partial Order

Let S be any set, and let P(S) be its power set, the set whose elements are the
subsets of S,

P(S) = {S : S is a subset of S}.
The proper subset relation “(” in P(S) satisfies two conditions:

• (Partial Trichotomy) For any S, T ∈ P(S), at most one of the conditions

S ( T, S = T, T ( S

holds, and possibly none of them holds.
• (Transitivity) For any S, T, U ∈ P(S), if S ( T and T ( U then also S ( U .

The two conditions are the motivating example of a partial order.

Definition 1.1. Let T be a set. Let ≺ be a relation that may stand between some
pairs of elements of T . Then ≺ is a partial order on T if

• For any s, t ∈ T , at most one of the conditions

s ≺ t, s = t, t ≺ s

holds.
• For any r, s, t ∈ T , if r ≺ s and s ≺ t then also r ≺ t.

If for any s, t ∈ T , also at least one of the three conditions in the first bullet holds
then the partial order is a total order.

A relation ≺ on some pairs from a set T need have nothing to do with any sort
of numerical order.

Visibly, any subset of a partially ordered set is again partially ordered, and
similarly for a totally ordered set.
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If ≺ is a partial order on T then for any s, t ∈ T , the definitions of the relations

�, �, �
in terms of the basic relation ≺ are clear, and so we feel free to use these additional
relations without further comment.

Definition 1.2. Let (T,≺) be a partially ordered set. A subset S of T is an initial
segment if

for each s ∈ S, also r ∈ S for all r ≺ s.
The section of any element t ∈ T is

Tt = {s ∈ T : s ≺ t}.
Thus any section is an initial segment, while T is an initial segment that is not a
section.

2. Well Ordering

Definition 2.1. Let (T,≺) be a partially ordered set. Then T is well ordered
by ≺ if

every nonempty set of T has a least element.

That is, T is well ordered by ≺ if every nonempty subset S of T contains an
element so ∈ S such that so � s for all s ∈ S. By partial trichotomy there is at
most one such element.

Complementing the general observations that any section of a partially ordered
set (T,≺) is an initial segment and that T is an initial segment but not a section,
we note that if T is well ordered by ≺ then also any initial segment other than T
is a section. Indeed, given an initial segment S ( T , the complement of S in T has
a least element t, and one quickly sees that S = Tt.

3. Closed Sets and the Fundamental Lemma

Definition 3.1. Let (T,≺) be a partially ordered set, and let S be a subset of T .
Any element t ∈ T such that

s � t for all s ∈ S
is called an upper bound of S. If to is an upper bound of S such that

to � t for all upper bounds t of S

then to is the least upper bound of S.

Partial trichotomy shows that a least upper bound, if it exists, is unique, justi-
fying the the least upper bound in the definition.

Definition 3.2. Let (T,≺) be a partially ordered set. Any totally ordered subset
of T is called a chain in T . If the ordering of T has the property that every chain
in T has a least upper bound in T then T is closed.

Lemma 3.3 (Fundamental Lemma). Let (T,≺) be a closed partially ordered set.
Suppose that a mapping

f : T −→ T

satisfies the condition
f(t) � t for all t ∈ T .

Then there exists some to ∈ T such that f(to) = to.
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Proof. Since T is closed, there is a least upper bound function on chains in T ,

g : {chains in T} −→ T, g(C) = least upper bound of C.

Given a chain C, each of its sections Ct is a chain in turn and hence has a least
upper bound g(Ct). A chain C that is well ordered and satisfies

fg(Ct) = t for all t ∈ C
is called an fg-chain. Every initial segment of an fg-chain is again an fg-chain.

Let C and D be fg-chains. We will show that one of them is an initial segment
of the other. Suppose that D is not an initial segment of C.

The set of initial segments I of D is well ordered by containment; indeed, each
I 6= D is a section I = Dd(I) as noted at the end of section 2 above, so given a set
{Ii} of such segments, the set {d(Ii)} has a least element d(Ij) and thus {Ii} has
least element Ij . Since D is not an initial segment of C, it is sensible to define

A = the first initial segment of D that is not an initial segment of C.

If A has no last element then each element a of A lies in the proper initial
segment Aa ∪ {a} of A. The proper initial segments of A are initial segments of C
by definition of A, and thus A is an initial segment of C, contradicting its own
definition. So we may assume that A has a last element t.

The initial segment At is both an initial segment of C and an initial segment
of D. If At = C then C is an initial segment of D, and we are done. (Recall
that we are trying to prove that if the fg-chain D is not an initial segment of the
fg-chain C then C must be an initial segment of D.) Thus it remains to show that
the condition At 6= C is impossible. Let At 6= C and let u be the first element
of C −At. Then

Dt = At = Cu

and hence, since C and D are fg-chains,

t = fg(Dt) = fg(Cu) = u.

Thus
A = At ∪ {t} = Cu ∪ {u} is an initial segment of C,

contrary to the definition of A, and showing that the supposition At 6= C is im-
possible. This completes the argument that given any two fg-chains in T , one is
always an initial segment of the other.

Recall that T is closed, that f : T −→ T is such that f(t) � t for all t ∈ T , and
that we are trying to find some to ∈ T such that f(to) = to. To do so, let S be the
union of all fg-chains in T . Then

(1) the argument just given shows that S is linearly ordered and thus a chain,
(2) S is well ordered,
(3) t = fg(St) for all t ∈ S, and thus S is an fg-chain,
(4) No proper superset of S is an fg-chain.

Now take
to = fg(S) � g(S),

an upper bound of S. If to /∈ S then S ∪ {to} is an fg-chain, contradicting (4).
Thus to ∈ S, and hence to � g(S), so by the previous display to = g(S), and finally,

f(to) = fg(S) = to,

as desired. �
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4. Zorn’s Lemma

Definition 4.1. Let (T,≺) be a partially ordered set. A maximal element of T is
an element m of T satisfying the condition

m ⊀ t for all t ∈ T .

That is:

To say that an element is maximal is not necessarily to say it is
bigger than all others, but rather no other is bigger.

We now assume the Axiom of Choice.

Theorem 4.2 (Zorn’s Lemma). Let (T,≺) be a closed partially ordered set. Then
T contains at least one maximal element.

Proof. Suppose that T has no maximal element. Then for each t ∈ T there is a
nonempty subset of T ,

St = {u ∈ T : t ≺ u}.
The Axiom of Choice says that consequently there exists a function f : T −→ T
such that f(t) ∈ St for all t ∈ T . That is,

f(t) � t for all t ∈ T .
This contradicts the Fundamental Lemma. �

5. The Well Ordering Principle

Again we assume the Axiom of Choice.

Theorem 5.1 (Well Ordering Principle). Let T be a set. Then T can be well
ordered.

Proof. By the Axiom of Choice, there exists a function ϕ that assigns to each proper
subset S of T an element of T − S. Define a ϕ-chain to be a well ordered subset
(S,≺) of T such that

ϕ(St) = t for all t ∈ S.
(Here St = {s ∈ S : s ≺ t} is a section of S as before.)

The argument of the Fundamental Lemma applies with ϕ-chains in place of fg-
chains. The union S of all ϕ-chains is well ordered, is a ϕ-chain, and no proper
superset of S is again a ϕ-chain.

If S ( T then we could adjoin ϕ(S) ∈ T−S to S as a terminal element, obtaining
a proper superset of S that is again a ϕ-chain, contradiction. Thus S = T , showing
that T is well ordered. �

6. Transfinite Induction

Theorem 6.1 (Transfinite Induction Principle). Let (T,≺) be well ordered. Con-
sider a proposition form P over T . If

for every t ∈ T , P(s) for all s ∈ Tt =⇒ P(t)

then
P(t) for all t ∈ T .

Proof. Otherwise there is a least t ∈ T such that P(t) is false. But then P (s) for
all s ∈ Tt, and so P (t) is true after all, contradiction. �
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7. An Application to Field Constructions

Given a field k and a nonconstant polynomial f ∈ k[X], constructing a smallest-
possible field extension of k in which f has a root is easy, and so is constructing
a smallest-possible field extension of k in which f splits completely into linear
factors. But constructing a smallest-possible field extension k of k in which every
nonconstant polynomial in k[X] has a root, and in fact even every nonconstant
polynomial in k[X] splits into linear factors, requires Zorn’s Lemma. We carry out
the three field constructions in succession.

7.1. Root Fields. Let k be any field, and let f(X) ∈ k[X] be irreducible and have
positive degree. We want to construct a superfield K of k in which f has a root.
To do so, consider the quotient ring

R = k[X]/〈f〉,
where 〈f〉 is the principal ideal f(X)k[X] of k[X]. That is, R is the usual ring
of polynomials over k subject to the additional rule f(X) = 0. Specifically, the
ring-elements are cosets and the operations are

(g + 〈f〉) + (h+ 〈f〉) = (g + h) + 〈f〉,
(g + 〈f〉)(h+ 〈f〉) = gh+ 〈f〉.

The ring forms a vector space over k whose dimension is deg(f).
The fact that f is irreducible makes the ideal 〈f〉 maximal, and consequently R

is a field, not only a ring. Indeed, consider an ideal I of k[X] that contains 〈f〉 and
some g /∈ 〈f〉. Thus f - g, and so (f, g) = 1 (because f is irreducible). So there
exist F,G ∈ k[X] such that

Ff +Gg = 1 in k[X].

Since the ideal I contains f and g, it contains 1, making it all of R.
Now use the field R to create a set K of symbols that is a superset of k and is

in bijective correspondence with R. That is, there is a bijection

σ : R
∼−→ K, σ(a+ 〈f〉) = a for all a ∈ k.

Endow K with addition and multiplication operations that turn the set bijection
into a field isomorphism. The operations on K thus extend the operations on k.
Name a particular element of K,

r = σ(X + 〈f〉).
Then

f(r) = f(σ(X + 〈f〉)) by definition of r

= σ(f(X + 〈f〉)) since algebra passes through σ

= σ(f(X) + 〈f〉) by the nature of algebra in R

= σ(〈f〉) by the nature of algebra in R

= 0 by construction of σ.

Thus K is a superfield of k containing an element r such that f(r) = 0.

For example, since the polynomial f(X) = X3 − 2 is irreducible over Q, the
corresponding quotient ring

R = Q[X]/〈X3 − 2〉 = {a+ bX + cX2 + 〈X3 − 2〉 : a, b, c ∈ Q}
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is a field. And from R we construct a field (denoted Q(r) or Q[r]) such that r3 = 2.
Yes, we know that there exist cube roots of 2 in the superfield C of Q, but the
construction given here is purely algebraic and makes no assumptions about the
nature of the starting field k to which we want to adjoin a root of a polynomial.

7.2. Splitting Fields. Again let k be a field and consider a nonunit polynomial
f(X) ∈ k[X]. We can construct an extension field

k1 = k(r1),

where r1 satisfies some irreducible factor of f . Let

f2(X) = f(X)/(X − r1) ∈ k1[X].

We can construct an extension field

k2 = k1(r2) = k(r1, r2),

where r2 satisfies some irreducible factor of f2. Continue in this fashion until
reaching a field where the original polynomial f factors down to linear terms. The
resulting field is the splitting field of f over k, denoted

splk(f).

Continuing the example of the previous section, compute that

X3 − 2

X − r
= X2 + rX + r2 in Q(r)[X].

Let s = rt where t3 = 1 but t 6= 1. Then, working in Q(r, t) we have

s2 + rs+ r2 = r2t2 + r2t+ r2 = r2(t2 + t+ 1) = r2 · 0 = 0,

Thus s = rt satisfies the polynomial X2 + rX + r2, and now compute that

X2 + rX + r2

X − rt
= X − rt2 in Q(r, t)[X].

That is,

X3 − 2 = (X − r)(X − rt)(X − rt2) ∈ Q(r, t)[X],

showing that

splQ(X3 − 2) = Q(r, t).

7.3. Algebraic Closure. Again let k be a field. Associate to each nonconstant
monic irreducible polynomial f ∈ k[X] an indeterminate Xf , and let S denote the
set of such indeterminates,

S = {Xf : f ∈ k[X] nonconstant monic irreducible}.
Consider the ring of polynomials in the elements of S,

A = k[S],

and consider the ideal of A generated by all the f(Xf ),

Io = 〈{f(Xf ) : Xf ∈ S}〉.
We show that Io is a proper ideal of A by showing that no relation exists of the

form ∑
f

gf (S)f(Xf ) = 1,
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where the sum is finite and each gf is a polynomial in finitely many elements of S.
Any such relation occurs in in a subring of A consisting of the polynomials in finitely
many variables,

Ao = k[{Xf appearing in the relation}].
Using the earlier results from this section, we may construct a superfield K of k
where for each variable Xf occurring in the relation, the polynomial f has a root rf .
There is a homomorphism

Ao −→ K, Xf 7−→ rf for each Xf appearing in the relation.

Let R denote the set of roots rf from a moment ago. Pass the relation through the
homomorphism to get ∑

f

gf (R)f(rf ) = 1.

But this is impossible since each f(rf ) = 0. This completes the argument that Io
is a proper ideal of A.

Now consider the set of superideals of Io that are again proper ideals of A

I(A) = {I : Io ⊆ I ( A, I is an ideal of A}.

This set is partially ordered by proper containment. Given any chain C in I(A),
consider the union of all elements of all ideals of the chain,

J =
⋃
I∈C

I ⊂ A.

Each element x of J lies in some ideal Ix of C. Thus, any two elements x, y of J
lie in a common ideal I of C since one of Ix and Iy contains or equals the other.
Thus x+ y ∈ I as well since I is an ideal, and consequently x+ y ∈ J . That is, J
is closed under addition. Similar arguments show that J is in fact an ideal of A.
Also, 1 /∈ J since 1 /∈ I for each ideal I of the chain C. In sum, J ∈ I(A), and we
have shown that

I(A) is closed.

Consequently, by Zorn’s Lemma,

I(A) has a maximal element M,

which is to say,

A contains a maximal superideal M of Io.

Because the ideal is maximal, the corresponding quotient is a field,

k = A/M.

And in the quotient each nonconstant monic irreducible polynomial f ∈ k[X] has
a root, Xf +M .

We want to establish two more properties of k:

(1) It is not too big, in the sense that every element of k satisfies a polynomial
over k.

(2) It is big enough, in the sense that every nonconstant polynomial g ∈ k[X]
has a root in k[X], and therefore every such g has all of its roots in k[X].

Establishing these properties is facilitated by a bit of vocabulary.



8 THE AXIOM OF CHOICE, ZORN’S LEMMA, AND THE WELL ORDERING PRINCIPLE

Definition 7.1. Let k be a field. An element α of a superfield K of k is alge-
braic over k if α is a root of some nonzero polynomial in k]X]. A superfield K
of k is algebraic over k if each of its elements is algebraic over k. The field k is
algebraically closed if no proper superfield is algebraic over k.

If α is algebraic over k then the polynomials in k[X] satisfied by α form a nonzero
ideal. Because k[X] is a PID, the ideal has a unique monic generator (monic means
that the coefficient of the highest power of X is 1). This generator is called the
minimal polynomial of α over k. The minimal polynomial is irreducible, since
otherwise one of its proper factors is again satisfied by α, contradicting its property
of dividing all such polynomials.

Proposition 7.2. Every element of k is algebraic over k.

Proof. Every element α of k is the coset of a polynomial in finitely many Xf , and

so it lies in the subfield of k generated by finitely many ri. The subfield forms a
finite-dimensional vector space over k, and so the powers of α,

{1, α, α2, · · · }
must be linearly dependent over k. That is, α satisfies a nonzero polynomial over k.

�

Proposition 7.3. Any nonconstant polynomial in k[X] has all of its roots in k as
well. That is, k is algebraically closed.

Proof. It suffices to consider any irreducible polynomial in k[X], and it suffices to
show that one root of the polynomial lies in k. Thus, consider a monic irreducible
polynomial in k[X],

xn + c1x
n−1 + · · ·+ cn, ci ∈ k,

and let α be one of its roots. Each ring k[ci] is a finite-dimensional vector space
over k, and hence so is the ring

Ro = k[c1, . . . , cn].

Let
R = Ro[α] = k[c1, . . . , cn, α].

If {vi : 1 ≤ i ≤ m} is a basis of Ro over k then

{viαj : 1 ≤ i ≤ m, 0 ≤ j < n}
is a basis of R as a vector space over k. Thus R has a basis {r1, . . . , r`} as a vector
space over k. Multiply α by each basis element to get

αr1 = a11r1 + a12r2 + · · ·+ a1`r`,

αr2 = a21r1 + a22r2 + · · ·+ a1`r`,

...

αr` = a`1r1 + a`2r2 + · · ·+ a``r`,

or, letting ~r denote the column vector with entries r1, . . . , r`,

α~r = A~r, A ∈ k`×`.
Thus α is an eigenvalue of A, a root of the characteristic polynomial of A, a polyno-
mial with coefficients in the original ground field k. But the field k already contains
all roots of all nonconstant polynomials in k[X]. That is, α ∈ k as desired. �
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In sum, k is algebraic over k and algebraically closed. One can further show that
every algebraic extension of k embeds (injects homomorphically) in k and that k is
unique up to isomorphism, but we omit these arguments.


