
FREE MODULES

Throughout, let A be a commutative ring with 1.

1. Basic Definition

Definition 1.1 (Module). An A-module is an abelian group M with a multipli-
cation

A×M −→M, (a,m) 7−→ am

such that for all a, a′ ∈ A and m,m′ ∈M ,

a(m+m′) = am+ am′,

(a+ a′)m = am+ a′m,

a(a′m) = (aa′)m.

The A-module M is unital if

1Am = m for all m ∈M.

The two immediate examples are that any abelian group is a Z-module, and any
vector space over a field k is a k-module.

All modules that we encounter will be unital.

2. Mapping Property, Uniqueness

Definition 2.1 (Mapping Property of the Free Module). Let S be a set. The free
A-module on S is an A-module M and a map from the set to it,

i : S −→M,

having the following property: For every map from the set to an A-module,

φ : S −→ X,

there exists a unique A-linear map from the free module to the same module,

Φ : M −→ X,

such that Φ ◦ i = φ, i.e., such that the following diagram commutes,

M

Φ

''NNNNNNN

S

i

OO

φ
// X.

The definition calls for various comments.

• Although i and φ are set maps, Φ is an A-module map. All that is required
for Φ to exist as a set map is that i inject, but the issues here are matters
of algebraic structure.
• Given S we do not yet know that the free A-module exists, or that it has

any sort of uniqueness property to justify the definite article the in its name.
• How satisfactorily the mapping property definition explains the word free

depends on one’s experience and intuition.
1



2 FREE MODULES

The first point to settle is that any two free A-modules on a set S are naturally
isomorphic. Thus, while we still do need to create a free A-module on S at some
point, the specifics of how we do so are spurious.

Proposition 2.2 (Uniqueness of the Free Module). Let S be a set. Let M and N
be free A-modules on S,

i1 : S −→M and i2 : S −→ N.

Then there is a unique A-module isomorphism ι : M −→ N such that ι ◦ i1 = i2,
i.e., such that the following diagram commutes,

S
i1

~~}}}}}}}
i2

  
AAAAAAA

M
ι //_______ N.

Proof. Since M and N are both free A-modules on S, there are unique A-linear
maps

ι : M −→ N such that ι ◦ i1 = i2

and

ι′ : N −→M, such that ι′ ◦ i2 = i1.

We want to show that ι is an isomorphism.
The composition

ι′ ◦ ι : M −→M

is an A-linear map such that

(ι′ ◦ ι) ◦ i1 = ι′ ◦ (ι ◦ i1) = ι′ ◦ i2 = i1.

The definition says that there is a unique such A-linear map, and certainly the
identity map on M fits the bill. Thus ι′ ◦ ι is the identity map on M , and similarly
ι ◦ ι′ is the identity map on N . The map ι is an isomorphism in consequence. �

3. Generators, Linear Independence

The next result explicates the sense in which the free A-module on a set S is
free.

Proposition 3.1 (Free Module Generators, Their Independence). Let S be a set
and let i : S −→ M be the free A-module on S. Then M is generated by the set
{i(s) : s ∈ S}. Furthermore, the generators i(s) are linearly independent, meaning
that the only relation∑

s∈S
asi(s) = 0M each as ∈ A, only finitely many as nonzero

is the trivial relation with all as = 0.

The proposition tells us that the free A-module on S, if it exists at all, must
be essentially the finite formal sums

∑
s∈S ass with all as ∈ A. The problem here

is that finite formal sum and products as of ring-elements by set-elements are not
strictly legitimate within algebraic formalism. We will work around the problem
soon.
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Proof. Let Mo be the A-submodule of M generated by {i(s) : s ∈ S}, let Q =
M/Mo be the quotient, and let q : M −→ Q be the quotient map. Also, let
z : S −→ Q and Z : M −→ Q be the zero maps. Certainly

Z ◦ i = z,

but also, since i(S) ⊂Mo,

q ◦ i = z.

Thus the uniqueness statement in the mapping property of the free module gives
q = Z. In other words, Mo is all of M .

As for the second statement in the proposition, suppose that∑
s∈S

asi(s) = 0M each as ∈ A, only finitely many as nonzero.

Fix s̃ ∈ S and define

φ : S −→ A, s 7−→

{
1 if s = s̃,

0 if s 6= s̃.

Let Φ : M −→ A be the associated A-module homomorphism. Then

as̃ =
∑
s

asφ(s) =
∑
s

as(Φ ◦ i)(s) = Φ(
∑
s

asi(s)) = Φ(0M ) = 0A.

Since s̃ is arbitrary, the linear combination
∑
s asi(s) is trivial. �

The proposition shows that in particular if the ring A is a field k then the free
k-module on S is the k-vector space having basis {i(s) : s ∈ S}. We will use this
fact in the next section.

4. Invariance of Rank

Although we still don’t have the free A-module on a set S, we use the character-
istic mapping property to show, knowing no specifics about its construction, that
its rank is well defined. The relevant underlying result is the nontrivial fact that
the dimension of a vector space is well defined.

In the ring-with-unit A there exists a maximal ideal J and thus A projects to
the field k = A/J (if A is already a field then J = {0}). To see this, consider a
chain of proper ideals,

J1 ⊂ J2 ⊂ · · · .
Let J =

⋃
i Ji. The fact that J is again an ideal of A is straightforward to verify.

The point is that J ( A, and the argument is that if 1 ∈ J then 1 ∈ Jj for some j,
contrary to our assumption.

Also, given an ideal J of A, not necessarily maximal, any A-module N that is
annihilated by J can be viewed as an A/J-module because the action

(a+ J)n = an

is well defined; and conversely any A/J-module N can be viewed as an A-module
that is annihilated by J by turning the definition around,

an = (a+ J)n.

We use these ideas in the next argument.
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Proposition 4.1 (Invariance of Rank). Suppose that S is finite, and that the free
A-module i : S −→M also takes the form j : T −→M . Then |S| = |T |.

Proof. Let J be a maximal proper ideal of A, so that A/J is a field k. Let

JM = {finite sums
∑

jαmα with each jα ∈ J , mα ∈M},

and consider the quotient and the quotient map

V = M/JM, q : M −→ V.

The quotient has a k-vector space structure,

(a+ J)(m+ JM) = am+ JM,

and it also can be viewed as an A-module that is annihilated by J ,

a(m+ JM) = am+ JM.

Note that the construction of V has made no reference to either of the maps i :
S −→M and j : T −→M . We claim that

q ◦ i : S −→ V

is a free k-module on S. Granting the claim, |S| = dimk V and similarly |T | =
dimk V , giving |S| = |T | as desired. As mentioned already, the fact that dimk V is
well defined is itself nontrivial.

To prove the claim, consider any map

φ : S −→W, W a k-vector space.

View W as an A-module that is annihilated by J-multiplication,

aw = (a+ J)w, a ∈ A, w ∈W.

Then there is a unique A-linear map

Ψ : M −→W, Ψ ◦ i = φ.

Since multiplication by J annihilates W , we have for all j ∈ J and m ∈M ,

Ψ(jm) = jΨ(m) = 0W .

That is, JM ⊂ ker(Ψ), and so there is a map

Φ : V −→W, Φ ◦ q = Ψ.

Thus Φ ◦ (q ◦ i) = (Φ ◦ q) ◦ i = Ψ ◦ i = φ. The definition

Φ(m+ JM) = Ψ(m)

combines with the A-linearity of Ψ to show that Φ is k-linear, and the argument is
complete. �
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5. Additivity of Rank

Proposition 5.1 (Additivity of Rank). Let S and T be disjoint sets. Suppose that
i : S −→ M and j : T −→ N are free A-modules. Let iM : M −→ M ⊕ N and
jN : N −→ M ⊕ N be the linear maps in the characterizing mapping property of
the coproduct M ⊕N . Define

k =

{
iM ◦ i on S
jN ◦ j on T

}
: S t T −→M ⊕N.

Then k : S t T −→M ⊕N is again a free A-module. Thus

rankA(M ⊕N) = rankA(M) + rankA(N).

Proof. Since S and T are disjoint, any set–map from S tT to an A-module X can
be represented as follows,

S
φ|S
// X T .

φ|T
oo

Since i : S −→ M and j : T −→ N are free, there exist unique linear maps
ΦM : M −→ X and ΦN : N −→ X that make the following diagram commute,

M
ΦM

  A
A

A
A N

ΦN

~~}
}

}
}

S
φ|S
//

i

OO

X T .
φ|T
oo

j

OO

The characterizing mapping property of the coproduct M ⊕ N is that there exist
linear maps iM : M −→M ⊕N and jN : N −→M ⊕N such that any pair of linear
maps from M and N to any X factors uniquely through M ⊕ N . In particular,
there exists a unique linear Φ : M ⊕ N −→ X such that the following diagram
commutes,

M
ΦM

##HHHHHHHHH
iM // M ⊕N

Φ

��
�
�
� N

ΦN

{{vvvvvvvvv
jNoo

S
φ|S

//

i

OO

X T .
φ|T

oo

j

OO

Consequently, so does the following subdiagram,

M ⊕N

Φ

��
�
�
�

S
φ|S

//

k|S
;;wwwwwwwww
X T .

φ|T
oo

k|T
ccHHHHHHHHH

The diagram shows a linear Φ : M ⊕N −→ X such that Φ ◦ k = φ.
As for uniqueness, any linear map Φ as in the previous diagram gives rise to the

linear maps Φ ◦ iM : M −→ X and Φ ◦ jN : N −→ X such that Φ ◦ iM ◦ i = φ|S
and Φ ◦ jN ◦ j = φ|T . Thus Φ ◦ iM and Φ ◦ jN are unique since M and N are free,
and then Φ is unique by the mapping property of the coproduct.

This proof assumes some construction of the coproduct M ⊕ N . The usual
construction with ordered pairs will do. �
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6. Existence

Finally we construct the free A-module on S. The gadget is a small formalism
to encode the intuitive idea of finite formal A-linear combinations of S.

Proposition 6.1 (Existence of the Free Module). Let S be a set. Then a free
A-module on S exists.

Proof. Let M be the set of functions

f : S −→ A, f(s) = 0 for all but finitely many s.

The addition and scalar-multiplication of such functions is what it must be,

(f + g)(s) = f(s) + g(s) for all s,

(af)(s) = a(f(s)) for all s.

In particular, for each s̃ ∈ S, define

fs̃ : S −→ A, s 7−→

{
1 if s = s̃,

0 if s 6= s̃.

This fs̃ is the stand-in for s̃ itself in the algebraic structure M , of course. Thus,
define

i : S −→M, i(s) = fs.

To show that this is a free module on S, we must verify the desired mapping
property. Thus, consider any map from S to an A-module,

φ : S −→ X.

Define, correspondingly,

Φ : M −→ X, Φ(f) =
∑
s∈S

φ(s)f(s).

The linearity of Φ is straightforward to verify. For example,

Φ(f + g) =
∑
s∈S

φ(s)(f + g)(s) =
∑
s∈S

φ(s)(f(s) + g(s))

=
∑
s∈S

(φ(s)f(s) + φ(s)g(s)) =
∑
s∈S

φ(s)f(s) +
∑
s∈S

φ(s)g(s)

= Φ(f) + Φ(g).

And similarly Φ(af) = aΦ(f). Especially, for any s̃ ∈ S,

Φ(i(s̃)) = Φ(fs̃) =
∑
s∈S

φ(s)fs̃(s) = φ(s̃).

And clearly Φ is only possible linear map from M to X such that Φ(fs) = φ(s) for
all s. �

To repeat, the argument has shown that the intuitive notion of finite formal
A-linear combinations has a precise construction as an A-module with no reference
to undefined terms.


