FACTORIZATION OF POLYNOMIALS

1. POLYNOMIALS IN ONE VARIABLE OVER A FIELD

Theorem 1.1. Let k be a field. Then the polynomial ring k[X] is Euclidean, hence a PID, hence a UFD.

Recall that the polynomial norm is

$$N: k[X] - \{0\} \longrightarrow \mathbb{Z}_{>0}, \quad Nf = \deg(f).$$

Note that nonzero constant polynomials have norm 0. Sometimes we define

$$N0 = -\infty$$

as well.

The verification that the k[X]-norm makes k[X] Euclidean is a matter of polynomial long division from high school. Specifically, given $f, g \in k[X]$ with $g \neq 0$, proceed as follows.

(Initialize) Set q = 0 and r = f. Let g = b_mx^m + · · · . (So f = qg + r.)
(Iterate) While deg r ≥ deg g, let r = r_nxⁿ + · · · and set δ = (r_n/b_m)x^{n-m} replace q by q + δ replace r by r - δg. (Still f = qg + r, and deg r has decreased.)
(Terminate)

Return q and r. (Now f = qg + r, and $\deg r < \deg g$.)

2. PRIMITIVE POLYNOMIALS AND THE GAUSS LEMMA

Definition 2.1. Let A be a UFD. The **content** of a nonzero polynomial $f \in A[X]$ is any greatest common divisor of its coefficients. Thus the content is defined up to multiplication by units. A polynomial is **primitive** if its content is 1.

Lemma 2.2 (Gauss). Let A be a UFD, and let $f, g \in A[X]$ be primitive. Then their product fg is again primitive.

Proof. For any prime π of A, a lowest-index coefficient a_i of f not divisible by π exists because f is primitive, and similarly for a lowest-index coefficient b_j of g not divisible by π . The (i + j)-index coefficient of fg is an i + j + 1-fold sum,

$$a_0b_{i+j} + \dots + a_{i-1}b_{j+1} + a_ib_j + a_{i+1}b_{j-1} + a_{i+j}b_0.$$

The first *i* terms are divisible by π by definition of *i*, and the similarly for the last *j* terms. But the middle term $a_i b_j$ is not, and hence the sum is not.

Any nonzero polynomial $f \in A[X]$ takes the form

 $f = c_f \tilde{f}$ where c_f is the content of f and \tilde{f} is primitive.

And so the short calculation

$$fg = c_f \tilde{f} c_g \tilde{g} = c_f c_g \tilde{f} \tilde{g}$$

combines with the Gauss lemma to show that:

The content of the product is the product of the contents.

Naturally, the Gauss Lemma has an important consequence. On the face of things, a polynomial $f \in A[X]$ could be irreducible and yet have a nontrivial factorization in k[X] where k is the quotient field of A. However, only slightly more generally than above, any nonzero polynomial $g \in k[X]$ takes the form

$$g = c_g \tilde{g}, \quad c_g \in k^{\times}, \ \tilde{g} \in A[X]$$
 primitive

Indeed, let

$$g = \sum_{i=0}^{d} (a_i/b_i) X^i,$$

and set $b_g = \operatorname{lcm}\{b_0, \dots, b_d\}$. Then $b_g g$ has integral coefficients $a_i b_g / b_i$. Next set $a_g = \operatorname{gcd}\{a_0 b_g / b_0, \dots, a_d b_g / b_d\}$, so that the suitably-scaled polynomial

$$\tilde{g} = (b_g/a_g)g$$

is primitive. Thus $g = c_q \tilde{g}$ as desired.

Now, if a nonzero polynomial $f \in A[X]$ has a nontrivial factorization f = gh in k[X] then in fact

$$f = c\tilde{g}\tilde{h}, \quad c \in k^{\times}, \ \tilde{g}, \tilde{h} \in A[X]$$
 primitive.

By the Gauss Lemma, $\tilde{g}\tilde{h}$ is again primitive, and so $c \in R$. That is, the consequence of the Gauss Lemma is:

Theorem 2.3. Let $f \in A[X]$ be nonzero. If f factors in k[X] then it factors in A[X].

3. The Criteria of Schönemann and Eisenstein

Proposition 3.1 (Schönemann's Criterion). Let A be a UFD, and let $f(X) \in A[X]$ be monic of positive degree n. Suppose that for some element a of A and some prime ideal \mathfrak{p} of A,

$$f(X) = (X - a)^n \mod \mathfrak{p}[X]$$
 and $f(a) \neq 0 \mod \mathfrak{p}^2$

Then f(X) is irreducible modulo $\mathfrak{p}^2[X]$ and hence f(X) is irreducible in A[X].

Especially the ideal \mathfrak{p} could take the form $\mathfrak{p} = \pi A$ where $\pi \in A$ is prime.

Proof. We show the contrapositive statement, arguing that if f(X) is reducible mod $\mathfrak{p}^2[X]$ then its reduction looks enough like $(X - a)^n$ to force $f(a) = 0 \mod \mathfrak{p}^2$. Specifically, suppose that

$$f(X) = f_1(X)f_2(X) \operatorname{mod} \mathfrak{p}^2[X].$$

The reduction modulo \mathfrak{p}^2 agrees modulo \mathfrak{p} with the reduction modulo \mathfrak{p} ,

$$f_1(X)f_2(X) = (X-a)^n \operatorname{mod} \mathfrak{p}[X],$$

and so (since we may take $f_1(X)$ and $f_2(X)$ to be monic) we have for i = 1, 2,

 $f_i(X) = (X - a)^{n_i} \operatorname{mod} \mathfrak{p}[X], \quad n_i \in \mathbb{Z}^+.$

(Specifically, from $f_1(X)f_2(X) = (X - a)^n$ in $(A/\mathfrak{p})[X]$ where the polynomials now have their coefficients reduced modulo \mathfrak{p} , the same equality holds in k[X]where k is the quotient field of the integral domain A/\mathfrak{p} . Because k[X] is a UFD, $f_i(X) = (X - a)^{n_i}$ in k[X] for i = 1, 2, but these equalities stand between elements of $(A/\mathfrak{p})[X]$, giving the previous display.) Consequently $f_i(a) = 0 \mod \mathfrak{p}$ for i = 1, 2, and so the first display in the proof gives $f(a) = 0 \mod \mathfrak{p}^2$ as desired.

Corollary 3.2 (Prime Cyclotomic Polynomials are Irreducible). *The pth cyclo-tomic polynomial*

$$\Phi_p(X) = X^{p-1} + \dots + X + 1$$

is irreducible.

Proof. The relation $(X - 1)\Phi_p(X) = X^p - 1$ gives

$$(X-1)\Phi_p(X) = (X-1)^p \mod p\mathbb{Z}[X].$$

Since $\mathbb{Z}[X]/p\mathbb{Z}[X] \approx (\mathbb{Z}/p\mathbb{Z})[X]$ is an integral domain, we may cancel to get

$$\Phi_p(X) = (X-1)^{p-1} \operatorname{mod} p\mathbb{Z}[X].$$

Also, $\Phi_p(1) = p \neq 0 \mod p^2 \mathbb{Z}$. So the proposition applies.

The argument for prime-power cyclotomic polynomials is essentially the same since e

$$\Phi_{p^e}(X) = \Phi_p(X^{p^{e-1}}) = \frac{X^{p^e} - 1}{X^{p^{e-1}} - 1}$$

Corollary 3.3 (Eisenstein's Criterion). Let A be a UFD, and consider a polynomial

$$f(X) = X^n + \dots + a_1 X + a_0 \in A[X].$$

Suppose that for some prime ideal \mathfrak{p} of A,

$$a_0 \in \mathfrak{p}, \quad a_1 \in \mathfrak{p}a_1, \quad \cdots, \quad a_{n-1} \in \mathfrak{p},$$

 $a_0 \notin \mathfrak{p}^2.$

Then f is irreducible in A[X].

Proof. Because $f(X) = X^n \mod \mathfrak{p}[X]$ and $f(0) \neq 0 \mod \mathfrak{p}^2$, the proposition applies with a = 0.

In modern texts, Eisenstein's Criterion is proved directly with no reference to Schönemann's Criterion, as follows. The product of two polynomials

$$g(X) = b_{\ell} X^{\ell} + \dots + b_1 X + b_0 \in A[X], \quad b_{\ell} \neq 0,$$

$$h(X) = c_m X^m + \dots + c_1 X + c_0 \in A[X], \quad c_m \neq 0$$

is

$$g(X)h(X) = \sum_{k=0}^{\ell+m} \sum_{i+j=k} b_i c_j X^k$$

The constant term is b_0c_0 , so if we are to have f(X) = g(X)h(X) then since

$$a_0 = b_0 c_0$$

and a_0 contains exactly one power of π , we may assume by symmetry that b_0 is divisible by one power of π and c_0 by none. Let b_k be the lowest-indexed coefficient of g(X) not divisible by π . Then also

$$a_k = b_0 c_k + b_1 c_{k-1} + \dots + b_k c_0$$

is not divisible by π , and so k = n. Thus the only possible factorization of f is f(X) = cg(X) where $c \in A$ is not a unit. But f is primitive, so such a factorization is impossible.

Also, modern texts prove that prime cyclotomic polynomials are irreducible by using Eisenstein's Criterion, as follows. Since

$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X^2 + X^1 + 1,$$

the finite geometric sum formula gives

$$\Phi_p(X) = \frac{X^p - 1}{X - 1},$$

so that

$$\Phi_p(X+1) = \frac{(X+1)^p - 1}{X} = \frac{\sum_{i=1}^p {\binom{p}{i} X^i}}{X} = \sum_{i=0}^{p-1} {\binom{p}{i+1} X^i}.$$

Thus $\Phi_p(X + 1)$ satisfies Eisenstein's Criterion at p by properties of the binomial coefficients, making it irreducible over \mathbb{Z} . Consequently, $\Phi_p(X)$ is irreducible: any factorization $\Phi_p(X) = g(X)h(X)$ would immediately yield a corresponding factorization $\Phi_p(X + 1) = g(X + 1)h(X + 1)$ since the mapping property of polynomials says that replacing X by X + 1 gives an \mathbb{Z} -linear endomorphism of $\mathbb{Z}[X]$, and in fact an automorphism since the inverse map is obvious. But no such corresponding factorization of $\Phi_p(X + 1)$ exists, so no factorization of $\Phi_p(X)$ exists either.

Note how much tidier the Schönemann argument is. See David Cox's January 2011 *Monthly* article for the story of Schönemann's and Eisenstein's criteria.

4. POLYNOMIALS OVER A UFD

Theorem 4.1. Let A be a UFD. Then the polynomial ring A[X] is again a UFD.

Proof. Let k be the quotient field of A. Since k[X] is a UFD, the issue is only to show that the unique factorization restricts to the subring A[X].

We have already shown that any nonzero polynomial $g \in k[X]$ takes the form

$$g = c_q \tilde{g}, \quad c_q \in k^{\times}, \ \tilde{g} \in A[X]$$
 primitive.

Now let $f \in A[X]$ have degree at least 1. Then f factors uniquely into irreducibles in k[X],

$$f = f_1 \cdots f_r.$$

The factorization rewrites as

 $f = c_1 \tilde{f}_1 \cdots c_r \tilde{f}_r$, each $c_i \in k^{\times}$, each $\tilde{f}_i \in A[X]$ irreducible and primitive.

Consolidate the constants to get

$$f = c f_1 \cdots f_r$$
, $c \in k^{\times}$, each $f_i \in A[X]$ irreducible and primitive.

The Gauss lemma says that $\tilde{f}_1 \cdots \tilde{f}_r$ is again primitive, and thus c is the content of f, an element of A,

$$f = c\tilde{f}_1 \cdots \tilde{f}_r$$
, $c \in A$, each $\tilde{f}_i \in A[X]$ irreducible and primitive.

A second factorization,

$$f = d\tilde{g}_1 \cdots \tilde{g}_s, \quad d \in A, \text{ each } \tilde{g}_i \in A[X] \text{ irreducible and primitive}$$

is the same as the first one in k[X]. Thus s = r and $\tilde{g}_i = c_i \tilde{f}_i$ with $c_i \in k^{\times}$ for each *i*. It quickly follows that $dc_1 \cdots c_r = c$, and the factorization is unique. (But as always, *unique* means *unique* up to *units*.)

Corollary 4.2. Let A be a UFD, and let n be a positive integer. Then the polynomial ring $A[X_1, \dots, X_n]$ is again a UFD.

As an example of some ideas in the writeup thus far, let k be a field, let $n \ge 2$ be an integer, let a_0, \dots, a_{n-1} be indeterminates over k, and consider the UFD

$$A = k[a_0, \cdots, a_{n-1}].$$

Its quotient field is $K = k(a_0, \dots, a_{n-1})$, the field generated over k by the indeterminates, the field of rational expressions in the indeterminates. We want to show that the general degree n polynomial over k,

$$f(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0},$$

is irreducible in K[X]. By Theorem 2.3 it suffices to show that f(X) is irreducible in A[X]. But

$$A[X] = k[a_0, \cdots, a_{n-1}][X] = k[a_0, \cdots, a_{n-1}, X],$$

and so it suffices to show that f(X) is does not factor in the UFD $k[a_0, \dots, a_{n-1}, X]$. Any such factorization would reduce modulo X to a factorization in the quotient ring

$$B = k[a_0, \cdots, a_{n-1}, X] / \langle X \rangle \approx k[a_0, \cdots, a_{n-1}].$$

But the reduction of f(X) in B is (after the isomorphism) simply a_0 . Thus the reduction has no factorization, and we are done. (Alternatively, we could define $B' = k[a_0, \dots, a_{n-1}, X]/\langle a_1, \dots, a_{n-1} \rangle$ and apply the Eisenstein–Schönemann criterion to the reduction $X^n + a_0$ of f(X) in B'.)

5. KRONECKER'S FACTORING ALGORITHM

Factoring in the integer ring \mathbb{Z} is a finite process. The most naive method, trial division, requires \sqrt{n} steps to find a factor of n. The next proposition and its corollary show, for example, that factorization in $\mathbb{Z}[X_1, \dots, X_n]$ is also a finite process.

Proposition 5.1. Let A be a UFD with a factoring algorithm. Then A[X] is again a UFD with a factoring algorithm.

Proof. Let $f(X) \in A[X]$ have degree d. We may investigate only whether f has a factor g of degree at most $e = \lfloor d/2 \rfloor$.

Consider the values $f(a_0), \dots, f(a_e)$ for e+1 distinct *a*-values. If *f* has a factor *g* as above then $g(a_i) \mid f(a_i)$ in *A* for $i = 0, \dots, e$. Algorithmically, each $f(a_i)$ is a product of finitely many irreducible factors, giving finitely many possibilities for each $g(a_i)$. Each possibility for the values $g(a_0), \dots, g(a_e)$ determines a unique polynomial $g(X) \in k[X]$ (where *k* is the field of quotients of *A*) having degree at most *e*. Specifically, *g* can be computed by Lagrange interpolation,

$$g(X) = \sum_{i=0}^{e} g(a_i) \prod_{\substack{j=0\\ j \neq i}}^{e} \frac{X - a_j}{a_i - a_j} \,.$$

For each such g, the division algorithm in k[X] (where k is the field of quotients of A) shows whether g is a factor of f in k[X] and the Gauss Lemma says that in fact the division algorithm is showing us whether g is a factor of f in A[X]. \Box

In practice the algorithm is hopelessly inefficient, and much better algorithms exist. The point here is only that an algorithm exists at all.

Corollary 5.2. Let A be a UFD with a factoring algorithm, and let n be a positive integer. Then $A[X_1, \dots, X_n]$ is again a UFD with a factoring algorithm.