
FACTORIZATION OF POLYNOMIALS

1. Polynomials in One Variable Over a Field

Theorem 1.1. Let k be a field. Then the polynomial ring k[X] is Euclidean, hence
a PID, hence a UFD.

Recall that the polynomial norm is

N : k[X]− {0} −→ Z≥0, Nf = deg(f).

Note that nonzero constant polynomials have norm 0. Sometimes we define

N0 = −∞

as well.
The verification that the k[X]-norm makes k[X] Euclidean is a matter of poly-

nomial long division from high school. Specifically, given f, g ∈ k[X] with g 6= 0,
proceed as follows.

• (Initialize)
Set q = 0 and r = f . Let g = bmx

m + · · · . (So f = qg + r.)
• (Iterate)

While deg r ≥ deg g,
let r = rnx

n + · · · and set δ = (rn/bm)xn−m

replace q by q + δ
replace r by r − δg. (Still f = qg + r, and deg r has decreased.)

• (Terminate)
Return q and r. (Now f = qg + r, and deg r < deg g.)

2. Primitive Polynomials and the Gauss Lemma

Definition 2.1. Let A be a UFD. The content of a nonzero polynomial f ∈ A[X]
is any greatest common divisor of its coefficients. Thus the content is defined up to
multiplication by units. A polynomial is primitive if its content is 1.

Lemma 2.2 (Gauss). Let A be a UFD, and let f, g ∈ A[X] be primitive. Then
their product fg is again primitive.

Proof. For any prime π of A, a lowest-index coefficient ai of f not divisible by π
exists because f is primitive, and similarly for a lowest-index coefficient bj of g not
divisible by π. The (i+ j)-index coefficient of fg is an i+ j + 1-fold sum,

a0bi+j + · · ·+ ai−1bj+1 + aibj + ai+1bj−1 + ai+jb0.

The first i terms are divisible by π by definition of i, and the similarly for the last
j terms. But the middle term aibj is not, and hence the sum is not. �

Any nonzero polynomial f ∈ A[X] takes the form

f = cf f̃ where cf is the content of f and f̃ is primitive.
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And so the short calculation

fg = cf f̃ cg g̃ = cfcg f̃ g̃

combines with the Gauss lemma to show that:

The content of the product is the product of the contents.

Naturally, the Gauss Lemma has an important consequence. On the face of
things, a polynomial f ∈ A[X] could be irreducible and yet have a nontrivial
factorization in k[X] where k is the quotient field of A. However, only slightly more
generally than above, any nonzero polynomial g ∈ k[X] takes the form

g = cg g̃, cg ∈ k×, g̃ ∈ A[X] primitive.

Indeed, let

g =

d∑
i=0

(ai/bi)X
i,

and set bg = lcm{b0, · · · , bd}. Then bgg has integral coefficients aibg/bi. Next set
ag = gcd{a0bg/b0, · · · , adbg/bd}, so that the suitably-scaled polynomial

g̃ = (bg/ag)g

is primitive. Thus g = cg g̃ as desired.
Now, if a nonzero polynomial f ∈ A[X] has a nontrivial factorization f = gh

in k[X] then in fact

f = cg̃h̃, c ∈ k×, g̃, h̃ ∈ A[X] primitive.

By the Gauss Lemma, g̃h̃ is again primitive, and so c ∈ R. That is, the consequence
of the Gauss Lemma is:

Theorem 2.3. Let f ∈ A[X] be nonzero. If f factors in k[X] then it factors
in A[X].

3. The Criteria of Schönemann and Eisenstein

Proposition 3.1 (Schönemann’s Criterion). Let A be a UFD, and let f(X) ∈ A[X]
be monic of positive degree n. Suppose that for some element a of A and some prime
ideal p of A,

f(X) = (X − a)n mod p[X] and f(a) 6= 0 mod p2.

Then f(X) is irreducible modulo p2[X] and hence f(X) is irreducible in A[X].

Especially the ideal p could take the form p = πA where π ∈ A is prime.

Proof. We show the contrapositive statement, arguing that if f(X) is reducible
mod p2[X] then its reduction looks enough like (X − a)n to force f(a) = 0 mod p2.
Specifically, suppose that

f(X) = f1(X)f2(X) mod p2[X].

The reduction modulo p2 agrees modulo p with the reduction modulo p,

f1(X)f2(X) = (X − a)n mod p[X],

and so (since we may take f1(X) and f2(X) to be monic) we have for i = 1, 2,

fi(X) = (X − a)ni mod p[X], ni ∈ Z+.
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(Specifically, from f1(X)f2(X) = (X − a)n in (A/p)[X] where the polynomials
now have their coefficients reduced modulo p, the same equality holds in k[X]
where k is the quotient field of the integral domain A/p. Because k[X] is a UFD,
fi(X) = (X − a)ni in k[X] for i = 1, 2, but these equalities stand between elements
of (A/p)[X], giving the previous display.) Consequently fi(a) = 0 mod p for i = 1, 2,
and so the first display in the proof gives f(a) = 0 mod p2 as desired. �

Corollary 3.2 (Prime Cyclotomic Polynomials are Irreducible). The pth cyclo-
tomic polynomial

Φp(X) = Xp−1 + · · ·+X + 1

is irreducible.

Proof. The relation (X − 1)Φp(X) = Xp − 1 gives

(X − 1)Φp(X) = (X − 1)p mod pZ[X].

Since Z[X]/pZ[X] ≈ (Z/pZ)[X] is an integral domain, we may cancel to get

Φp(X) = (X − 1)p−1 mod pZ[X].

Also, Φp(1) = p 6= 0 mod p2Z. So the proposition applies. �

The argument for prime-power cyclotomic polynomials is essentially the same
since

Φpe(X) = Φp(Xpe−1

) =
Xpe − 1

Xpe−1 − 1
.

Corollary 3.3 (Eisenstein’s Criterion). Let A be a UFD, and consider a polynomial

f(X) = Xn + · · ·+ a1X + a0 ∈ A[X].

Suppose that for some prime ideal p of A,

a0 ∈ p, a1 ∈ pa1, · · · , an−1 ∈ p,

a0 /∈ p2.

Then f is irreducible in A[X].

Proof. Because f(X) = Xn mod p[X] and f(0) 6= 0 mod p2, the proposition applies
with a = 0. �

In modern texts, Eisenstein’s Criterion is proved directly with no reference to
Schönemann’s Criterion, as follows. The product of two polynomials

g(X) = b`X
` + · · ·+ b1X + b0 ∈ A[X], b` 6= 0,

h(X) = cmX
m + · · ·+ c1X + c0 ∈ A[X], cm 6= 0

is

g(X)h(X) =

`+m∑
k=0

∑
i+j=k

bicjX
k.

The constant term is b0c0, so if we are to have f(X) = g(X)h(X) then since

a0 = b0c0

and a0 contains exactly one power of π, we may assume by symmetry that b0 is
divisible by one power of π and c0 by none. Let bk be the lowest-indexed coefficient
of g(X) not divisible by π. Then also

ak = b0ck + b1ck−1 + · · ·+ bkc0
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is not divisible by π, and so k = n. Thus the only possible factorization of f is
f(X) = cg(X) where c ∈ A is not a unit. But f is primitive, so such a factorization
is impossible.

Also, modern texts prove that prime cyclotomic polynomials are irreducible by
using Eisenstein’s Criterion, as follows. Since

Φp(X) = Xp−1 +Xp−2 + · · ·+X2 +X1 + 1,

the finite geometric sum formula gives

Φp(X) =
Xp − 1

X − 1
,

so that

Φp(X + 1) =
(X + 1)p − 1

X
=

∑p
i=1 ( p

i )Xi

X
=

p−1∑
i=0

( p
i+1

)
Xi.

Thus Φp(X + 1) satisfies Eisenstein’s Criterion at p by properties of the binomial
coefficients, making it irreducible over Z. Consequently, Φp(X) is irreducible: any
factorization Φp(X) = g(X)h(X) would immediately yield a corresponding factor-
ization Φp(X + 1) = g(X + 1)h(X + 1) since the mapping property of polynomials
says that replacing X by X + 1 gives an Z-linear endomorphism of Z[X], and in
fact an automorphism since the inverse map is obvious. But no such corresponding
factorization of Φp(X + 1) exists, so no factorization of Φp(X) exists either.

Note how much tidier the Schönemann argument is. See David Cox’s Janu-
ary 2011 Monthly article for the story of Schönemann’s and Eisenstein’s criteria.

4. Polynomials over a UFD

Theorem 4.1. Let A be a UFD. Then the polynomial ring A[X] is again a UFD.

Proof. Let k be the quotient field of A. Since k[X] is a UFD, the issue is only to
show that the unique factorization restricts to the subring A[X].

We have already shown that any nonzero polynomial g ∈ k[X] takes the form

g = cg g̃, cg ∈ k×, g̃ ∈ A[X] primitive.

Now let f ∈ A[X] have degree at least 1. Then f factors uniquely into irreducibles
in k[X],

f = f1 · · · fr.
The factorization rewrites as

f = c1f̃1 · · · crf̃r, each ci ∈ k×, each f̃i ∈ A[X] irreducible and primitive.

Consolidate the constants to get

f = cf̃1 · · · f̃r, c ∈ k×, each f̃i ∈ A[X] irreducible and primitive.

The Gauss lemma says that f̃1 · · · f̃r is again primitive, and thus c is the content
of f , an element of A,

f = cf̃1 · · · f̃r, c ∈ A, each f̃i ∈ A[X] irreducible and primitive.

A second factorization,

f = dg̃1 · · · g̃s, d ∈ A, each g̃i ∈ A[X] irreducible and primitive
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is the same as the first one in k[X]. Thus s = r and g̃i = cif̃i with ci ∈ k× for
each i. It quickly follows that dc1 · · · cr = c, and the factorization is unique. (But
as always, unique means unique up to units.) �

Corollary 4.2. Let A be a UFD, and let n be a positive integer. Then the polyno-
mial ring A[X1, · · · , Xn] is again a UFD.

As an example of some ideas in the writeup thus far, let k be a field, let n ≥ 2
be an integer, let a0, · · · , an−1 be indeterminates over k, and consider the UFD

A = k[a0, · · · , an−1].

Its quotient field is K = k(a0, · · · , an−1), the field generated over k by the indeter-
minates, the field of rational expressions in the indeterminates. We want to show
that the general degree n polynomial over k,

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0,

is irreducible in K[X]. By Theorem 2.3 it suffices to show that f(X) is irreducible
in A[X]. But

A[X] = k[a0, · · · , an−1][X] = k[a0, · · · , an−1, X],

and so it suffices to show that f(X) is does not factor in the UFD k[a0, · · · , an−1, X].
Any such factorization would reduce modulo X to a factorization in the quotient
ring

B = k[a0, · · · , an−1, X]/〈X〉 ≈ k[a0, · · · , an−1].

But the reduction of f(X) in B is (after the isomorphism) simply a0. Thus the
reduction has no factorization, and we are done. (Alternatively, we could define
B′ = k[a0, · · · , an−1, X]/〈a1, · · · , an−1〉 and apply the Eisenstein–Schönemann cri-
terion to the reduction Xn + a0 of f(X) in B′.)

5. Kronecker’s Factoring Algorithm

Factoring in the integer ring Z is a finite process. The most naive method,
trial division, requires

√
n steps to find a factor of n. The next proposition and

its corollary show, for example, that factorization in Z[X1, · · · , Xn] is also a finite
process.

Proposition 5.1. Let A be a UFD with a factoring algorithm. Then A[X] is again
a UFD with a factoring algorithm.

Proof. Let f(X) ∈ A[X] have degree d. We may investigate only whether f has a
factor g of degree at most e = bd/2c.

Consider the values f(a0), · · · , f(ae) for e+1 distinct a-values. If f has a factor g
as above then g(ai) | f(ai) in A for i = 0, · · · , e. Algorithmically, each f(ai) is a
product of finitely many irreducible factors, giving finitely many possibilities for
each g(ai). Each possibility for the values g(a0), · · · , g(ae) determines a unique
polynomial g(X) ∈ k[X] (where k is the field of quotients of A) having degree at
most e. Specifically, g can be computed by Lagrange interpolation,

g(X) =

e∑
i=0

g(ai)

e∏
j=0
j 6=i

X − aj
ai − aj

.
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For each such g, the division algorithm in k[X] (where k is the field of quotients
of A) shows whether g is a factor of f in k[X] and the Gauss Lemma says that in
fact the division algorithm is showing us whether g is a factor of f in A[X]. �

In practice the algorithm is hopelessly inefficient, and much better algorithms
exist. The point here is only that an algorithm exists at all.

Corollary 5.2. Let A be a UFD with a factoring algorithm, and let n be a positive
integer. Then A[X1, · · · , Xn] is again a UFD with a factoring algorithm.


