FACTORIZATION OF POLYNOMIALS

1. Polynomials in One Variable Over a Field

Theorem 1.1. Let k be a field. Then the polynomial ring $k[X]$ is Euclidean, hence a PID, hence a UFD.

Recall that the polynomial norm is

$$
\mathrm{N}: k[X]-\{0\} \longrightarrow \mathbb{Z}_{\geq 0}, \quad \mathrm{~N} f=\operatorname{deg}(f) .
$$

Note that nonzero constant polynomials have norm 0 . Sometimes we define

$$
\mathrm{N} 0=-\infty
$$

as well.
The verification that the $k[X]$-norm makes $k[X]$ Euclidean is a matter of polynomial long division from high school. Specifically, given $f, g \in k[X]$ with $g \neq 0$, proceed as follows.

- (Initialize)

Set $q=0$ and $r=f$. Let $g=b_{m} x^{m}+\cdots .($ So $f=q g+r$.)

- (Iterate)

While $\operatorname{deg} r \geq \operatorname{deg} g$,
let $r=r_{n} x^{n}+\cdots$ and set $\delta=\left(r_{n} / b_{m}\right) x^{n-m}$
replace q by $q+\delta$
replace r by $r-\delta g$. (Still $f=q g+r$, and $\operatorname{deg} r$ has decreased.)

- (Terminate)

Return q and r. (Now $f=q g+r$, and $\operatorname{deg} r<\operatorname{deg} g$.)

2. Primitive Polynomials and the Gauss Lemma

Definition 2.1. Let A be a UFD. The content of a nonzero polynomial $f \in A[X]$ is any greatest common divisor of its coefficients. Thus the content is defined up to multiplication by units. A polynomial is primitive if its content is 1.

Lemma 2.2 (Gauss). Let A be a UFD, and let $f, g \in A[X]$ be primitive. Then their product $f g$ is again primitive.

Proof. For any prime π of A, a lowest-index coefficient a_{i} of f not divisible by π exists because f is primitive, and similarly for a lowest-index coefficient b_{j} of g not divisible by π. The $(i+j)$-index coefficient of $f g$ is an $i+j+1$-fold sum,

$$
a_{0} b_{i+j}+\cdots+a_{i-1} b_{j+1}+a_{i} b_{j}+a_{i+1} b_{j-1}+a_{i+j} b_{0}
$$

The first i terms are divisible by π by definition of i, and the similarly for the last j terms. But the middle term $a_{i} b_{j}$ is not, and hence the sum is not.

Any nonzero polynomial $f \in A[X]$ takes the form

$$
f=c_{f} \tilde{f} \quad \text { where } c_{f} \text { is the content of } f \text { and } \tilde{f} \text { is primitive. }
$$

And so the short calculation

$$
f g=c_{f} \tilde{f} c_{g} \tilde{g}=c_{f} c_{g} \tilde{f} \tilde{g}
$$

combines with the Gauss lemma to show that:
The content of the product is the product of the contents.
Naturally, the Gauss Lemma has an important consequence. On the face of things, a polynomial $f \in A[X]$ could be irreducible and yet have a nontrivial factorization in $k[X]$ where k is the quotient field of A. However, only slightly more generally than above, any nonzero polynomial $g \in k[X]$ takes the form

$$
g=c_{g} \tilde{g}, \quad c_{g} \in k^{\times}, \tilde{g} \in A[X] \text { primitive } .
$$

Indeed, let

$$
g=\sum_{i=0}^{d}\left(a_{i} / b_{i}\right) X^{i}
$$

and set $b_{g}=\operatorname{lcm}\left\{b_{0}, \cdots, b_{d}\right\}$. Then $b_{g} g$ has integral coefficients $a_{i} b_{g} / b_{i}$. Next set $a_{g}=\operatorname{gcd}\left\{a_{0} b_{g} / b_{0}, \cdots, a_{d} b_{g} / b_{d}\right\}$, so that the suitably-scaled polynomial

$$
\tilde{g}=\left(b_{g} / a_{g}\right) g
$$

is primitive. Thus $g=c_{g} \tilde{g}$ as desired.
Now, if a nonzero polynomial $f \in A[X]$ has a nontrivial factorization $f=g h$ in $k[X]$ then in fact

$$
f=c \tilde{g} \tilde{h}, \quad c \in k^{\times}, \tilde{g}, \tilde{h} \in A[X] \text { primitive }
$$

By the Gauss Lemma, $\tilde{g} \tilde{h}$ is again primitive, and so $c \in R$. That is, the consequence of the Gauss Lemma is:

Theorem 2.3. Let $f \in A[X]$ be nonzero. If f factors in $k[X]$ then it factors in $A[X]$.

3. The Criteria of Schönemann and Eisenstein

Proposition 3.1 (Schönemann's Criterion). Let A be a UFD, and let $f(X) \in A[X]$ be monic of positive degree n. Suppose that for some element a of A and some prime ideal \mathfrak{p} of A,

$$
f(X)=(X-a)^{n} \bmod \mathfrak{p}[X] \quad \text { and } \quad f(a) \neq 0 \bmod \mathfrak{p}^{2}
$$

Then $f(X)$ is irreducible modulo $\mathfrak{p}^{2}[X]$ and hence $f(X)$ is irreducible in $A[X]$.
Especially the ideal \mathfrak{p} could take the form $\mathfrak{p}=\pi A$ where $\pi \in A$ is prime.
Proof. We show the contrapositive statement, arguing that if $f(X)$ is reducible $\bmod \mathfrak{p}^{2}[X]$ then its reduction looks enough like $(X-a)^{n}$ to force $f(a)=0 \bmod \mathfrak{p}^{2}$. Specifically, suppose that

$$
f(X)=f_{1}(X) f_{2}(X) \bmod \mathfrak{p}^{2}[X]
$$

The reduction modulo \mathfrak{p}^{2} agrees modulo \mathfrak{p} with the reduction modulo \mathfrak{p},

$$
f_{1}(X) f_{2}(X)=(X-a)^{n} \bmod \mathfrak{p}[X],
$$

and so (since we may take $f_{1}(X)$ and $f_{2}(X)$ to be monic) we have for $i=1,2$,

$$
f_{i}(X)=(X-a)^{n_{i}} \bmod \mathfrak{p}[X], \quad n_{i} \in \mathbb{Z}^{+}
$$

(Specifically, from $f_{1}(X) f_{2}(X)=(X-a)^{n}$ in $(A / \mathfrak{p})[X]$ where the polynomials now have their coefficients reduced modulo \mathfrak{p}, the same equality holds in $k[X]$ where k is the quotient field of the integral domain A / \mathfrak{p}. Because $k[X]$ is a UFD, $f_{i}(X)=(X-a)^{n_{i}}$ in $k[X]$ for $i=1,2$, but these equalities stand between elements of $(A / \mathfrak{p})[X]$, giving the previous display.) Consequently $f_{i}(a)=0 \bmod \mathfrak{p}$ for $i=1,2$, and so the first display in the proof gives $f(a)=0 \bmod \mathfrak{p}^{2}$ as desired.

Corollary 3.2 (Prime Cyclotomic Polynomials are Irreducible). The pth cyclotomic polynomial

$$
\Phi_{p}(X)=X^{p-1}+\cdots+X+1
$$

is irreducible.
Proof. The relation $(X-1) \Phi_{p}(X)=X^{p}-1$ gives

$$
(X-1) \Phi_{p}(X)=(X-1)^{p} \bmod p \mathbb{Z}[X] .
$$

Since $\mathbb{Z}[X] / p \mathbb{Z}[X] \approx(\mathbb{Z} / p \mathbb{Z})[X]$ is an integral domain, we may cancel to get

$$
\Phi_{p}(X)=(X-1)^{p-1} \bmod p \mathbb{Z}[X]
$$

Also, $\Phi_{p}(1)=p \neq 0 \bmod p^{2} \mathbb{Z}$. So the proposition applies.
The argument for prime-power cyclotomic polynomials is essentially the same since

$$
\Phi_{p^{e}}(X)=\Phi_{p}\left(X^{p^{e-1}}\right)=\frac{X^{p^{e}}-1}{X^{p^{e-1}}-1}
$$

Corollary 3.3 (Eisenstein's Criterion). Let A be a UFD, and consider a polynomial

$$
f(X)=X^{n}+\cdots+a_{1} X+a_{0} \in A[X] .
$$

Suppose that for some prime ideal \mathfrak{p} of A,

$$
\begin{aligned}
& a_{0} \in \mathfrak{p}, \quad a_{1} \in \mathfrak{p} a_{1}, \quad \cdots, \quad a_{n-1} \in \mathfrak{p}, \\
& a_{0} \notin \mathfrak{p}^{2} .
\end{aligned}
$$

Then f is irreducible in $A[X]$.
Proof. Because $f(X)=X^{n} \bmod \mathfrak{p}[X]$ and $f(0) \neq 0 \bmod \mathfrak{p}^{2}$, the proposition applies with $a=0$.

In modern texts, Eisenstein's Criterion is proved directly with no reference to Schönemann's Criterion, as follows. The product of two polynomials

$$
\begin{aligned}
& g(X)=b_{\ell} X^{\ell}+\cdots+b_{1} X+b_{0} \in A[X], \quad b_{\ell} \neq 0 \\
& h(X)=c_{m} X^{m}+\cdots+c_{1} X+c_{0} \in A[X], \quad c_{m} \neq 0
\end{aligned}
$$

is

$$
g(X) h(X)=\sum_{k=0}^{\ell+m} \sum_{i+j=k} b_{i} c_{j} X^{k}
$$

The constant term is $b_{0} c_{0}$, so if we are to have $f(X)=g(X) h(X)$ then since

$$
a_{0}=b_{0} c_{0}
$$

and a_{0} contains exactly one power of π, we may assume by symmetry that b_{0} is divisible by one power of π and c_{0} by none. Let b_{k} be the lowest-indexed coefficient of $g(X)$ not divisible by π. Then also

$$
a_{k}=b_{0} c_{k}+b_{1} c_{k-1}+\cdots+b_{k} c_{0}
$$

is not divisible by π, and so $k=n$. Thus the only possible factorization of f is $f(X)=c g(X)$ where $c \in A$ is not a unit. But f is primitive, so such a factorization is impossible.

Also, modern texts prove that prime cyclotomic polynomials are irreducible by using Eisenstein's Criterion, as follows. Since

$$
\Phi_{p}(X)=X^{p-1}+X^{p-2}+\cdots+X^{2}+X^{1}+1
$$

the finite geometric sum formula gives

$$
\Phi_{p}(X)=\frac{X^{p}-1}{X-1}
$$

so that

$$
\Phi_{p}(X+1)=\frac{(X+1)^{p}-1}{X}=\frac{\sum_{i=1}^{p}\binom{p}{i} X^{i}}{X}=\sum_{i=0}^{p-1}\binom{p}{i+1} X^{i}
$$

Thus $\Phi_{p}(X+1)$ satisfies Eisenstein's Criterion at p by properties of the binomial coefficients, making it irreducible over \mathbb{Z}. Consequently, $\Phi_{p}(X)$ is irreducible: any factorization $\Phi_{p}(X)=g(X) h(X)$ would immediately yield a corresponding factorization $\Phi_{p}(X+1)=g(X+1) h(X+1)$ since the mapping property of polynomials says that replacing X by $X+1$ gives an \mathbb{Z}-linear endomorphism of $\mathbb{Z}[X]$, and in fact an automorphism since the inverse map is obvious. But no such corresponding factorization of $\Phi_{p}(X+1)$ exists, so no factorization of $\Phi_{p}(X)$ exists either.

Note how much tidier the Schönemann argument is. See David Cox's January 2011 Monthly article for the story of Schönemann's and Eisenstein's criteria.

4. Polynomials over a UFD

Theorem 4.1. Let A be a UFD. Then the polynomial ring $A[X]$ is again a UFD.
Proof. Let k be the quotient field of A. Since $k[X]$ is a UFD, the issue is only to show that the unique factorization restricts to the subring $A[X]$.

We have already shown that any nonzero polynomial $g \in k[X]$ takes the form

$$
g=c_{g} \tilde{g}, \quad c_{g} \in k^{\times}, \tilde{g} \in A[X] \text { primitive. }
$$

Now let $f \in A[X]$ have degree at least 1 . Then f factors uniquely into irreducibles in $k[X]$,

$$
f=f_{1} \cdots f_{r}
$$

The factorization rewrites as

$$
f=c_{1} \tilde{f}_{1} \cdots c_{r} \tilde{f}_{r}, \quad \text { each } c_{i} \in k^{\times}, \text {each } \tilde{f}_{i} \in A[X] \text { irreducible and primitive. }
$$

Consolidate the constants to get

$$
f=c \tilde{f}_{1} \cdots \tilde{f}_{r}, \quad \mathrm{c} \in k^{\times}, \text {each } \tilde{f}_{i} \in A[X] \text { irreducible and primitive. }
$$

The Gauss lemma says that $\tilde{f}_{1} \cdots \tilde{f}_{r}$ is again primitive, and thus c is the content of f, an element of A,

$$
f=c \tilde{f}_{1} \cdots \tilde{f}_{r}, \quad c \in A, \text { each } \tilde{f}_{i} \in A[X] \text { irreducible and primitive. }
$$

A second factorization,

$$
f=d \tilde{g}_{1} \cdots \tilde{g}_{s}, \quad d \in A, \text { each } \tilde{g}_{i} \in A[X] \text { irreducible and primitive }
$$

is the same as the first one in $k[X]$. Thus $s=r$ and $\tilde{g}_{i}=c_{i} \tilde{f}_{i}$ with $c_{i} \in k^{\times}$for each i. It quickly follows that $d c_{1} \cdots c_{r}=c$, and the factorization is unique. (But as always, unique means unique up to units.)

Corollary 4.2. Let A be a UFD, and let n be a positive integer. Then the polynomial ring $A\left[X_{1}, \cdots, X_{n}\right]$ is again a UFD.

As an example of some ideas in the writeup thus far, let k be a field, let $n \geq 2$ be an integer, let a_{0}, \cdots, a_{n-1} be indeterminates over k, and consider the UFD

$$
A=k\left[a_{0}, \cdots, a_{n-1}\right]
$$

Its quotient field is $K=k\left(a_{0}, \cdots, a_{n-1}\right)$, the field generated over k by the indeterminates, the field of rational expressions in the indeterminates. We want to show that the general degree n polynomial over k,

$$
f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

is irreducible in $K[X]$. By Theorem 2.3 it suffices to show that $f(X)$ is irreducible in $A[X]$. But

$$
A[X]=k\left[a_{0}, \cdots, a_{n-1}\right][X]=k\left[a_{0}, \cdots, a_{n-1}, X\right]
$$

and so it suffices to show that $f(X)$ is does not factor in the UFD $k\left[a_{0}, \cdots, a_{n-1}, X\right]$. Any such factorization would reduce modulo X to a factorization in the quotient ring

$$
B=k\left[a_{0}, \cdots, a_{n-1}, X\right] /\langle X\rangle \approx k\left[a_{0}, \cdots, a_{n-1}\right]
$$

But the reduction of $f(X)$ in B is (after the isomorphism) simply a_{0}. Thus the reduction has no factorization, and we are done. (Alternatively, we could define $B^{\prime}=k\left[a_{0}, \cdots, a_{n-1}, X\right] /\left\langle a_{1}, \cdots, a_{n-1}\right\rangle$ and apply the Eisenstein-Schönemann criterion to the reduction $X^{n}+a_{0}$ of $f(X)$ in B^{\prime}.)

5. Kronecker's Factoring Algorithm

Factoring in the integer ring \mathbb{Z} is a finite process. The most naive method, trial division, requires \sqrt{n} steps to find a factor of n. The next proposition and its corollary show, for example, that factorization in $\mathbb{Z}\left[X_{1}, \cdots, X_{n}\right]$ is also a finite process.

Proposition 5.1. Let A be a UFD with a factoring algorithm. Then $A[X]$ is again a UFD with a factoring algorithm.

Proof. Let $f(X) \in A[X]$ have degree d. We may investigate only whether f has a factor g of degree at most $e=\lfloor d / 2\rfloor$.

Consider the values $f\left(a_{0}\right), \cdots, f\left(a_{e}\right)$ for $e+1$ distinct a-values. If f has a factor g as above then $g\left(a_{i}\right) \mid f\left(a_{i}\right)$ in A for $i=0, \cdots, e$. Algorithmically, each $f\left(a_{i}\right)$ is a product of finitely many irreducible factors, giving finitely many possibilities for each $g\left(a_{i}\right)$. Each possibility for the values $g\left(a_{0}\right), \cdots, g\left(a_{e}\right)$ determines a unique polynomial $g(X) \in k[X]$ (where k is the field of quotients of A) having degree at most e. Specifically, g can be computed by Lagrange interpolation,

$$
g(X)=\sum_{i=0}^{e} g\left(a_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{e} \frac{X-a_{j}}{a_{i}-a_{j}}
$$

For each such g, the division algorithm in $k[X]$ (where k is the field of quotients of A) shows whether g is a factor of f in $k[X]$ and the Gauss Lemma says that in fact the division algorithm is showing us whether g is a factor of f in $A[X]$.

In practice the algorithm is hopelessly inefficient, and much better algorithms exist. The point here is only that an algorithm exists at all.

Corollary 5.2. Let A be a UFD with a factoring algorithm, and let n be a positive integer. Then $A\left[X_{1}, \cdots, X_{n}\right]$ is again a UFD with a factoring algorithm.

