
EUCLIDEAN RINGS

1. Introduction

The topic of this lecture is eventually a general analogue of the unique factoriza-
tion theorem for the integers:

Theorem 1.1. Let n be a nonzero integer. Then n factors as

n = ±pe11 · · · per
r , r ≥ 0, p1, · · · , pr ∈ P, e1, · · · , er ∈ Z+,

and the factorization is unique.

The proof that a factorization exists is easy, at least on the face of it. Consider
any positive integer n. If n is irreducible then we are done. Otherwise n = n1n2

with n1 < n and n2 < n, and so we are done by induction. The only worrisome point
here is that irreducible has appeared as a stand-in synonym for prime, suggesting
that prime might mean something other than irreducible to the cognescenti. We
will see that indeed the two words mean different things, and that the mathematical
use of prime is not as we would expect.

By contrast, the proof that the factorization is unique is nuanced. Many books
prove unique factorization in Z by elementary methods, but to me the issues are
somehow more naturally (i.e., more clearly, perhaps more easily) discussed in the
context of ring theory rather than just in the integers Z. The upshot is that this
lecture in some sense proceeds backwards through chapter 1 of Ireland and Rosen.
(Nonetheless, you should read the chapter from front to back.)

2. Rings, Integral Domains

Definition 2.1. A commutative ring with identity is an algebraic structure

(R,+, ·)

that satisfies all of the field axioms except (possibly) the existence of multiplicative
inverses. That is, for all r, s, t ∈ R we have

r + s = s+ r,

(r + s) + t = r + (s+ t),
r · s = s · r,
(r · s) · t = r · (s · t),
r · (s+ t) = r · s+ r · t.

and there exist distinct additive and multiplicative identities 0, 1 ∈ R such that for
all r ∈ R,

r + 0 = r,

r + s = 0 for some s ∈ R,
r · 1 = r.
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2 EUCLIDEAN RINGS

Often we will simply refer to a commutative ring with identity as a ring. And we
usually omit the “·” symbol for multiplication. As in Math 112, for any given r ∈ R,
the element s ∈ R such that r + s = 0 is unique, and so it can be unambiguously
denoted −r.

Definition 2.2. Given a ring (R,+, ·), its units group is the algebraic structure

(R×, ·)
whose underlying structure is the set of multiplicatively invertible elements of R,

R× = {r ∈ R : rs = 1 for some s ∈ R},
and whose operation is the restriction of the multiplication of R to R×.

The units group is an abelian group in that the product of two units is a unit
(if rs = 1 and r′s′ = 1 then (rr′)(ss′) = 1) and that for all r, s, t ∈ R×,

rs = sr,

(rs)t = r(st),
r1 = r,

and for all r ∈ R×,
rs = 1 for some s ∈ R×.

The s here is unique, so it can be denoted r−1.

Definition 2.3. An integral domain is a ring (R,+, ·) satisfying the following
property:

For all r, s ∈ R, rs = 0 =⇒ r = 0 or s = 0.

That is, an integral domain has no zero-divisors, i.e., no nonzero elements r, s
such that rs = 0. (To make sure that the language is clear: zero-divisor means
divisor of zero.) The cancellation law holds in any integral domain:

If ab = ac and a 6= 0 then b = c.

Note that we do not prove the cancellation law by multiplying through by a−1—the
inverse may not exist. Rather, the argument is that a(b− c) = 0 and a 6= 0, so that
b− c = 0.

Some rings to bear in mind, beyond the most obvious example Z (we usually
write R rather than (R,+, ·) when the operations are clear) are

• the Gaussian integers Z[i],
• the cubic integers Z[ω] where ω = ζ3 = e2πi/3 = (−1 + i

√
3)/2,

• the polynomial ring k[X] where k is any field.
Note that k[X] is a ring of functions rather than a ring of numbers.

3. Prime and Irreducible Elements

Definition 3.1. Let R be a ring. An element r of R divides an element s of R if
s = rr′ for some r′ ∈ R. The symbolic notation for r divides s is

r | s.
A nonunit r of R is prime if:

For all s, s′ ∈ R, r | ss′ =⇒ r | s or r | s′.
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Let R× be the unit group of R. A nonunit r of R is irreducible if:

For all s, s′ ∈ R, ss′ = r =⇒ s ∈ R× or s′ ∈ R×.

Thus primality is a criterion about how a given ring element fits into products,
while irreducibility is a criterion about how products fit into a given element. There
are ways to rewrite the definitions of prime and irreducible to further emphasize
their symmetry (e.g., for irreducibility, the condition

for all s, s′ ∈ R, ss′ = r =⇒ r | s or r | s′

is equivalent to the condition in the definition), but our phrasings of the definitions
are fairly standard.

4. Generally Prime =⇒ Irreducible

The cancellation law says that 0 is prime in any integral domain. On the other
hand, 0 is not irreducible since 0 · 0 = 0 but neither factor 0 of 0 is a unit. The
next result says that 0 is exceptional in being a prime that is not irreducible.

Proposition 4.1. In any integral domain, nonzero primes are irreducible.

Proof. Let R be an integral domain and let R× be its units group. Consider any
nonzero prime r of R. If r = ss′ then s | r and (without loss of generality) r | s.
Thus r = ss′ = rus′. Since r 6= 0 we have us′ = 1 by cancellation, and consequently
s′ ∈ R×. �

The converse question is
Are the irreducible elements of an integral domain prime?

This question does not have a general answer. For example, consider a subring of
the complex number system and its unit group,

R = Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z}, R× = {±1}.

Then R is an integral domain. The element 2 of R is irreducible because for all
s, s′ ∈ R,

ss′ = 2 =⇒ sss′s′ = 4 =⇒ ss = 2 or s is a unit or s′ is a unit,

but the condition ss = 2 is impossible in R since ss = a2 + 5b2 for some a, b ∈ Z.
On the other hand 2 is not prime because

2 | 6 = (1 +
√
−5)(1−

√
−5) but 2 - (1 +

√
−5) and 2 - (1−

√
−5).

(For instance, if 2 | 1+
√
−5 then also 2 = 2 | 1 +

√
−5 = 1−

√
−5, and consequently

4 = 2 · 2 | (1 +
√
−5)(1−

√
−5) = 6, which is false.)

5. Euclidean Domains

Definition 5.1. The integral domain R is Euclidean if it comes equipped with a
norm function

N : R \ {0} −→ Z≥0

such that the following condition holds: For all a, b ∈ R with b 6= 0, there exist
q, r ∈ R such that

a = qb+ r, r = 0 or Nr < Nb.

Here q is the quotient obtained on dividing a by b, and r is the remainder.

All of our example rings from earlier are Euclidean.
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• For R = Z, take Nn = |n| all nonzero n ∈ Z.
• For R = Z[i], take Nz = zz = |z|2 = a2+b2 for all nonzero z = a+ib ∈ Z[i].
• For R = Z[ω], take Nz = zz = |z|2 = a2 − ab + b2 for all nonzero z =
a+ ωb ∈ Z[ω]. (Note that ω = ω2.)
• For R = k[X], take Nf = deg(f) for nonzero polynomials f ∈ k[X]. Note

that nonzero constant polynomials have norm 0.

In each case we need to verify that the specified norm makes the integral domain
Euclidean.

• Verifying that the Z-norm makes Z Euclidean is easy: Given a, b ∈ Z with
b 6= 0, let

S = {a− qb : q ∈ Z}.
Note that S contains nonnegative elements (those arising from q ≤ a/b
if b > 0, those arising from q ≥ a/b if b < 0), and let r be the least
nonnegative element of S. Then indeed a = qb + r, and Nr = r must be
less than b because otherwise S has a smaller nonnegative element r − b.
• To verify that the Z[i]-norm makes Z[i] Euclidean, consider any a, b ∈ Z[i]

with b 6= 0. Note that a/b = r + is where r, s ∈ Q. Then a/b = r + is sits
in the unit box about some point q = m+ in ∈ Z[i]. Consequently a/b− q
sits in the unit box about 0. It follows that N(a/b− q) ≤ 1/2 < 1, and so
since the norm (extended to Q[i]) is multiplicative, N(a− qb) < Nb.
• The verification that Z[ω] is Euclidean is very similar. This time the

parallelogram about 0 is the points s + ωt where −1/2 ≤ s < 1/2 and
−1/2 ≤ t < 1/2. Any point in the parallelogram has norm at most 3/4,
hence norm strictly less than 1.
• The verification that the k[X]-norm makes k[X] Euclidean is a matter of

polynomial long division. Specifically, given a, b ∈ k[X] with b 6= 0, proceed
as follows.
◦ (Initialize)

Set q = 0 and r = f . Let g = bmx
m + · · · . (So f = qg + r.)

◦ (Iterate)
While deg r ≥ deg g,

let r = rnx
n + · · · and set δ = (rn/bm)xn−m

replace q by q + δ
replace r by r − δg. (Still f = qg + r, and deg r has decreased.)

◦ (Terminate)
Return q and r. (Now f = qg + r, and deg r < deg g.)

6. Ideals, Principal Ideals

Definition 6.1. Let R be a ring. A subset I of R is called an ideal if

(1) I is closed under addition: for all i, j ∈ I, also i+ j ∈ I.
(2) I is strongly closed under multiplication: for all r ∈ R and i ∈ I, also

ri ∈ I.

The definition of ideal may seem unmotivated. The point is that ideals are the
correct subrings for the creation of quotient rings, just as normal subgroups are
the correct subgroups for the creation of quotient groups. But we do not discuss
quotient structures here.
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For example, let R be a ring, pick any element r0 ∈ R and let (r0) denote the
set of all multiples of r0,

(r0) = {rr0 : r ∈ R}.
For instance, (2) = {0,±2,±4, · · · } in Z. Similarly, pick any two elements r0, s0 ∈ R
and let (r0, s0) denote the set of all R-linear combinations of r0 and s0,

(r0, s0) = {rr0 + ss0 : r, s ∈ R}.

For instance, (2, 3) = {−1 · 2 + 1 · 3, · · · } = {1, · · · } = Z in Z, while (2, 4) = (2) and
(4, 6) = (2) as well.

Definition 6.2. The ideal I is principal if it takes the form I = (r) for some
r ∈ R.

So far, all of the ideals that we have seen are principal. (NOT “principle.”) For
an example of a nonprincipal ideal, let R = Z[

√
−5] and let

I = (2, 1 +
√
−5).

Recalling that N(a + b
√
−5) = a2 + 5b2, note that N2 = 4 and N(1 +

√
−5) = 6.

Suppose that I is principal, i.e., I = (r) for some r ∈ Z[
√
−5]. Then

2 = rs for some s, so Nr | N2 = 4,

and
1 +
√
−5 = rs′ for some s′, so Nr | N(1 +

√
−5 = 6.

Thus Nr | 2. But the condition Nr = 2 is impossible. And the condition Nr = 1
forces I = Z[

√
−5], which is false. (Any element of I is r = 2s+ (1 +

√
−5)t where

s, t ∈ Z[
√
−5], and a little algebra shows that r = a + b

√
−5 where a and b have

the same parity. Thus r 6= 1, i.e., 1 /∈ I, and so the ideal is not the full ring.) In
conclusion, I can not be a principal ideal.

Definition 6.3. An integral domain in which every ideal is principal is called a
principal ideal domain.

Principal ideal domain is usually abbreviated to PID.

7. Euclidean =⇒ PID

Proposition 7.1. Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain. Let I be a nonzero ideal in R. Let b ∈ I be
an element of least norm. Note that b 6= 0. Since R is Euclidean, we have for any
a ∈ I some q, r ∈ R such that

a = qb+ r, r = 0 or Nr < Nb.

Since I is an ideal and a, b ∈ I, also r ∈ I, making the condition Nr < Nb
impossible. Thus r = 0, and so a = qb. That is, every element of I is a multiple
of b and hence I = (b). �

As an application of the proposition, consider a PID R. For any x, y ∈ R the
ideal (x, y) takes the form (x, y) = (z) for some z ∈ R. The ideal-generator z is a
common divisor of x and y. Also, z is a linear combination of x and y,

z = ax+ by for some a, b ∈ R.
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The display shows that any common divisor w of x and y divides z. Thus z is
the greatest common divisor of x and y. That is, the greatest common divisor of x
and y is a linear combination of x and y that generates the ideal (x, y). In symbols,
(x, y) = (gcd(x, y)). For this reason, the greatest common divisor gcd(x, y) is
usually written (x, y) without the gcd; the collision of (x, y) as gcd-notation and as
ideal-notation is a nonissue because the gcd and the ideal are essentially the same
thing. We saw this earlier with our calculations that (2, 3) = (1), (2, 4) = (2), and
(4, 6) = (2) in Z.

Continuing with the ideas of the previous paragraph, we compute a gcd by finding
an ideal-generator,

(826, 1890) = (826, 1890− 2 · 826)

= (238, 826) = (238, 826− 3 · 238)

= (112, 238) = (112, 238− 2 · 112)

= (14, 112) = (14, 112− 8 · 14)

= (0, 14) = (14).

Thus gcd(826, 1890) = 14. (The process just demonstrated is the venerable Eu-
clidean algorithm). And furthermore, we can backtrack to express the gcd as a
linear combination of the two given numbers,

14 = 238− 2 · 112

= 238− 2 · (826− 3 · 238)
= 7 · 238− 2 · 826

= 7 · (1890− 2 · 826)− 2 · 826
= −16 · 826 + 7 · 1890.

This process shows that we know how to solve any equation of the form

ax+ by = c,

where a, b, c ∈ Z are the given coefficients and we seek integer solutions (x, y).
Solutions exist if and only if gcd(a, b) | c, in which case we can find one particular
solution via the Euclidean algorithm, as above. All other solutions differ from the
particular solution by solutions to the homogenized equation ax + by = 0, which
is easy to solve: after dividing a and b by their gcd we get a′x + b′y = 0 where
gcd(a′, b′) = 1, and so the solutions are (x, y) = n(b′,−a′) for all n ∈ Z.

8. PID =⇒ (Irreducible =⇒ Prime)

Proposition 8.1. Let R be a PID. Then every irreducible element of R is prime.

Proof. Let r ∈ R be irreducible. Suppose that r | ss′ and r - s. We need to show
that r | s′.

Since r is irreducible and r - s, in fact (r, s) = (1). Thus there exist a, b ∈ R
such that ar + bs = 1.

Consequently ars′+bss′ = s′. But r | ars′+bss′, and hence r | s′ as desired. �
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9. PID =⇒ Noetherian

Definition 9.1. A ring R is Noetherian if any ascending chain of ideals in R,

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,

eventually stabilizes, meaning that the In are equal for all n after some starting
index N .

Proposition 9.2. Let R be a PID. Then R is Noetherian.

Proof. Given an ascending chain of ideals in R,

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,

let

I =
∞⋃
n=1

In.

Then I is an ideal of R (exercise). Since R is a PID, in fact I = (r) for some r ∈ R.
Since r ∈ I, in fact r ∈ IN for some N . Thus I = (r) ⊂ IN ⊂ I, so that IN = I.
Consequently In = I for all n ≥ N . �

10. (Noetherian and (Irreducible =⇒ Prime)) =⇒ UFD

Definition 10.1. An integral domain in which unique factorization holds is called
a unique factorization domain, or UFD.

Proposition 10.2. Let R be a Noetherian integral domain in which all irreducible
elements are prime. Then R is a UFD.

Proof. Let r be a nonzero element of R. The Noetherian property of R gives a
factorization of r into finitely many irreducibles, since otherwise we could create a
a nonstabilizing chain of ideals,

(r) ⊂ (r/r1) ⊂ (r/(r1r2)) ⊂ (r/(r1r2r3)) ⊂ · · · .

The fact that irreducibles are prime makes the factorization unique, since if

r = upe11 · · · pes
s = vqf11 · · · q

ft

t

where u, v are units, and all pi and qj are irreducible, then

p1 | qf11 · · · qfs
s

so that since p1 is prime we have (after reindexing if necessary)

p1 | q1

and thus, after multiplying q1 by a unit if necessary, p1 = q1. Repeat the argument
from here starting from

r/p1 = upe1−1
1 · · · pes

s = vqf1−1
1 · · · qft

t .

By induction on
∑
ei we have s ≤ t and ei ≤ fi for i = 1, · · · , s. But by symmetry

we also have t ≤ s and fi ≤ ei for i = 1, · · · , t. Thus the factorization is unique. �
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11. Summary

We have shown that

Euclidean =⇒ PID =⇒
{ irreducible =⇒ prime

Noetherian

}
=⇒ UFD.

And our rings Z, Z[i], Z[ω], and k[X] are all Euclidean, so they are UFDs.

This all may seem pointlessly Byzantine, but the issues here are already live in
utterly elementary contexts. For example:

• Math 112 exercises have to dance around the question
For what positive integers n is Z/nZ a field?

Everybody knows morally that the answer is For prime n. However, the
problem is that for any n ∈ Z+ it is easy to show that

n is prime =⇒ Z/nZ is a field =⇒ n is irreducible.

But to show that Z/nZ is a field only if n is prime requires the subtle fact
that irreducibles are prime in Z.
• Similarly, any argument that there is no square root of 2 in Q tacitly makes

use of unique factorization. Ultimately the argument boils down to
Let r ∈ Q satisfy r2 = 2. Then r = 2er′ where e ∈ Z and
r′ ∈ Q has no 2’s in its numerator or its denominator. Thus
2 = r2 = 22e(r′)2. But this is impossible because there are no 2’s
in (r′)2 and so the left side has one power of 2 while the right side
has an even number of 2’s.

The problem with the argument is that without unique factorization, a
number with one power of 2 conceivably could equal a number with an
even number of 2’s.


