ANALYSIS OF SMALL GROUPS

1. Big Enough Subgroups are Normal

Proposition 1.1. Let G be a finite group, and let q be the smallest prime divisor of $|G|$. Let $N \subset G$ be a subgroup of index q. Then N is a normal subgroup of G.

Proof. The group G acts on the coset space G / N by left translation, giving a map from G to the symmetric group on q letters,

$$
G \longrightarrow \operatorname{Aut}(G / N) \approx S_{q}
$$

Let K denote the kernel of the map. Clearly $K \subset N$ since each $g \in K$ must in particular left translate N back to itself. Thus, since q is the smallest prime divisor of $|G|$,

$$
q=|G / N|| | G / K \mid=q \cdot(\text { product of primes } p \geq q)
$$

On the other hand, the first isomorphism theorem says that G / K is isomorphic to the image of G in S_{q}, a subgroup of S_{q}. Thus $|G / K| \mid q$!, so that

$$
|G / K|=q \cdot(\text { product of primes } p<q)
$$

Comparing the two displays shows that $|G / N|=|G / K|$, and so the containment $K \subset N$ now gives $K=N$. Thus N is normal because it is a kernel.

2. Semidirect Products

First we discuss what it means for a given group to be a semidirect product of two of its subgroups.

Let G be a group, let K be a normal subgroup, and let Q be a complementary subgroup. That is,

$$
G=K Q, \quad K \triangleleft G, \quad K \cap Q=1_{G}
$$

Define a map

$$
\sigma: Q \longrightarrow \operatorname{Aut}(K), \quad q \longmapsto\left(\sigma_{q}: k \mapsto q k q^{-1}\right)
$$

Thus $\sigma_{q q^{\prime}}=\sigma_{q} \circ \sigma_{q^{\prime}}$ for all $q, q^{\prime} \in Q$, i.e., σ is a homomorphism. And of course $\sigma_{q}\left(k k^{\prime}\right)=\sigma_{q}(k) \sigma_{q}\left(k^{\prime}\right)$ for all $k, k^{\prime} \in K$ since conjugation is an inner automorphism.

Then the group-operation of G is

$$
k q \cdot \tilde{k} \tilde{q}=k q \cdot \tilde{k} q^{-1} \cdot q \tilde{q}=k \sigma_{q}(\tilde{k}) \cdot q \tilde{q}
$$

This group structure describes G as a semidirect product of K and Q. The notation is

$$
G=K \times_{\sigma} Q
$$

When Q acts trivially on K by conjugation, i.e., when all elements of K and Q commute, the semidirect product is simply the direct product. Regardless of whether the semidirect product is direct, we have a short exact sequence

$$
1 \longrightarrow K \longrightarrow \underset{1}{G} \longrightarrow Q \longrightarrow 1
$$

where the first map is inclusion and the second is $k q \mapsto q$. Furthermore, the sequence splits, in that the composite $Q \longrightarrow G \longrightarrow Q$, where the first map is inclusion, is the identity. The short exact sequence makes clear that K is so-named because it is the kernel group in the sequence, and similarly Q is so-named because it is the quotient group.

Second we discuss ingredients that suffice to construct a semidirect product.
Suppose that we have the data

- a group K,
- a group Q,
- a homomorphism $\sigma: Q \longrightarrow \operatorname{Aut}(K)$.

Define the following operation on the set $G=K \times Q$:

$$
(k, q)\left(k^{\prime}, q^{\prime}\right)=\left(k \sigma_{q}\left(k^{\prime}\right), q q^{\prime}\right)
$$

Note that the operation does not assume any sort of product between elements of K and elements of Q.

The operation is associative,

$$
\begin{aligned}
\left((k, q)\left(k^{\prime}, q^{\prime}\right)\right) \cdot\left(k^{\prime \prime}, q^{\prime \prime}\right) & =\left(k \sigma_{q}\left(k^{\prime}\right), q q^{\prime}\right) \cdot\left(k^{\prime \prime}, q^{\prime \prime}\right) \\
& =\left(k \sigma_{q}\left(k^{\prime}\right) \sigma_{q q^{\prime}}\left(k^{\prime \prime}\right),\left(q q^{\prime}\right) q^{\prime \prime}\right) \\
& =\left(k \sigma_{q}\left(k^{\prime} \sigma_{q^{\prime}}\left(k^{\prime \prime}\right)\right), q\left(q^{\prime} q^{\prime \prime}\right)\right) \\
& =(k, q) \cdot\left(k^{\prime} \sigma_{q^{\prime}}\left(k^{\prime \prime}\right), q^{\prime} q^{\prime \prime}\right) \\
& =(k, q) \cdot\left(\left(k^{\prime}, q^{\prime}\right)\left(k^{\prime \prime}, q^{\prime \prime}\right)\right) .
\end{aligned}
$$

The identity is $\left(1_{K}, 1_{Q}\right)$,

$$
\begin{aligned}
& (k, q)\left(1_{K}, 1_{Q}\right)=\left(k \sigma_{q}\left(1_{K}\right), q 1_{Q}\right)=(k, q) \\
& \left(1_{K}, 1_{Q}\right)(k, q)=\left(1_{K} \sigma_{1_{Q}}(k), 1_{Q} q\right)=(k, q)
\end{aligned}
$$

And the inverse of (k, q) is $\left(\sigma_{q^{-1}}\left(k^{-1}\right), q^{-1}\right)$,

$$
\begin{aligned}
& (k, q)\left(\sigma_{q^{-1}}\left(k^{-1}\right), q^{-1}\right)=\left(k \sigma_{q}\left(\sigma_{q^{-1}}\left(k^{-1}\right)\right), q q^{-1}\right)=\left(1_{K}, 1_{Q}\right) \\
& \left(\sigma_{q^{-1}}\left(k^{-1}\right), q^{-1}\right)(k, q)=\left(\sigma_{q^{-1}}\left(k^{-1}\right) \sigma_{q^{-1}}(k), q^{-1} q\right)=\left(1_{K}, 1_{Q}\right)
\end{aligned}
$$

Thus G is a group.
If we identify K with its embedded image $K \times 1_{Q}$ in G and similarly identify Q with $1_{K} \times Q$ in G then the group operation becomes the semidirect product law,

$$
k q \cdot k^{\prime} q^{\prime}=k \sigma_{q}\left(k^{\prime}\right) q q^{\prime}
$$

and K is normal,

$$
(*, q)\left(k, 1_{Q}\right)(*, q)^{-1}=(*, q)\left(k, 1_{Q}\right)\left(*, q^{-1}\right)=\left(*, 1_{Q}\right) .
$$

Thus the data K, Q, and σ give a semidirect product construction $G=K \times{ }_{\sigma} Q$ without assuming that K and Q are subgroups of a common group.

3. Groups of Order p^{2}

Let $|G|=p^{2}$ where p is prime, and let G act on itself by conjugation. The class formula gives

$$
p^{2}=|Z(G)|+\sum_{\mathcal{O}_{x}} p^{2} /\left|G_{x}\right|
$$

The sum is a multiple of p, and hence so is $|Z(G)|$. We are done unless $|Z(G)|=p$. In this case, consider a noncentral element g. Its isotropy group contains $Z(G)$ and g, making it all of G. This contradicts the noncentrality of g. Thus $|Z(G)|=p^{2}$, i.e., $Z(G)=G$, i.e., G is abelian.

4. Metacyclic Groups of Order $p q$

Let p and q be primes with $q>p$. We seek nonabelian groups G of order $p q$.
Any q-Sylow subgroup of G,

$$
K=\left\{1, a, \cdots, a^{q-1}\right\}
$$

is big enough to be normal. Thus, letting a p-Sylow subgroup be

$$
Q=\left\{1, b, \cdots, b^{p-1}\right\}
$$

we have

$$
G=K Q, \quad K \triangleleft G, \quad K \cap Q=1_{G} .
$$

That is, G is a semidirect product of K and Q. The only question is how Q acts on K by conjugation.

The automorphisms of K are

$$
a \longmapsto a^{e} \quad \text { for any nonzero } e \in \mathbb{Z} / q \mathbb{Z},
$$

and the composition of $a \mapsto a^{e}$ and $a \mapsto a^{f}$ is $a \mapsto a^{e f}$. That is,

$$
\operatorname{Aut}(K) \approx(\mathbb{Z} / q \mathbb{Z})^{\times}
$$

Elementary number theory (see below) shows that there is at least one generator g modulo q such that

$$
\left\{1, g, g^{2}, g^{3}, \cdots, g^{q-2}\right\} \quad \text { gives all the values } 1,2,3, \cdots, q-1 \text { modulo } q .
$$

That is, $g^{q-1}=1 \bmod q$ is the first positive power of g that equals 1 modulo q, so that

$$
\operatorname{Aut}(K) \text { is cyclic of order } q-1
$$

Therefore, there are nontrivial maps $\sigma: Q \longrightarrow \operatorname{Aut}(K)$ if and only if $p \mid q-1$. In this case, the unique order p subgroup of $\operatorname{Aut}(K)$ is isomorphic to

$$
\left\{1, g^{(q-1) / p}, g^{2(q-1) / p}, g^{(p-1)(q-1) / p}\right\}
$$

whose nontrivial elements are precisely the values $i \in \mathbb{Z} / q \mathbb{Z}$ such that $i \neq 1$ but $i^{p}=1$. Thus the nontrivial maps $Q \longrightarrow \operatorname{Aut}(K)$ are

$$
b \longmapsto\left(a \mapsto a^{i}\right), \quad i \neq 1 \bmod q \text { but } i^{p}=1 \bmod q
$$

In sum, nonabelian groups of order $p q$ exist only for $p \mid q-1$, in which case they are

$$
\left\langle a, b \mid a^{q}=b^{p}=1, b a b^{-1}=a^{i}\right\rangle \quad \text { where } i \neq 1 \bmod q \text { but } i^{p}=1 \bmod q .
$$

Especially, if $p=2$ then the only possibility is $i=-1 \bmod q$, giving the dihedral group D_{q}.

For a given p and q with $p \mid q-1$, different values of i give isomorphic groups. To see this, first note that any two such values i and i^{\prime} satisfy

$$
i^{\prime}=i^{e} \bmod q \quad \text { for some } e \in\{1, \cdots, p-1\} .
$$

Now let $\tilde{b}=b^{e}$. Then the relations $a^{q}=b^{p}=1, b a b^{-1}=a^{i}$ become

$$
a^{q}=\tilde{b}^{p}=1, \tilde{b} a \tilde{b}^{-1}=a^{i^{\prime}} .
$$

To see where the last relation comes from, compute

$$
\begin{aligned}
b^{e} a b^{-e} & =b^{e-1} \cdot b a b^{-1} \cdot b^{-(e-1)} \\
& =b^{e-1} a^{i} b^{-(e-1)} \\
& =\left(b^{e-1} a b^{-(e-1)}\right)^{i} \\
& =\left(b^{e-2} a b^{-(e-2)}\right)^{\left(i^{2}\right)} \\
& =\cdots \\
& =a^{\left(i^{e}\right)}
\end{aligned}
$$

Since $b^{p}=1$, this same calculation with p in place of e shows again why we need $i^{p}=1 \bmod q$, forcing p to divide $q-1$.

In general, any semidirect product $K \times{ }_{\sigma} Q$ where K and Q are cyclic (not necessarily of prime order) is called metacyclic.
4.1. A Brief Excursion into Elementary Number Theory. We have cited the following result.

Proposition 4.1. Let q be prime. Then $(\mathbb{Z} / q \mathbb{Z})^{\times}$is cyclic, with $\varphi(q-1)$ generators.
An elementary proof is possible, and indeed it is standard. But we have the tools in hand to give a more sophisticated argument. First of all, if $(\mathbb{Z} / q \mathbb{Z})^{\times}$is cyclic then our analysis of cyclic groups has already shown that it has $\varphi(q-1)$ generators. So only the cyclicity is in question.

The proof begins with the observation that a polynomial over a field can not have more roots than its degree.
Lemma 4.2. Let k be a field. Let the polynomial $f \in k[X]$ have degree $d \geq 1$. Then f has at most d roots in k.

Naturally, the field that we have in mind here is $k=\mathbb{Z} / q \mathbb{Z}$.
The lemma does require that k be a field, not merely a ring. For example, the quadratics polynomial $X^{2}-1$ over the ring $\mathbb{Z} / 24 \mathbb{Z}$ has eight roots,

$$
\{1,5,7,11,13,17,19,23\}=(\mathbb{Z} / 24 \mathbb{Z})^{\times}
$$

Proof. If f has no roots then we are done. Otherwise let $a \in k$ be a root. The polynomial division algorithm gives

$$
f(X)=q(X)(X-a)+r(X), \quad \operatorname{deg}(r)<1 \text { or } r=0
$$

(Here the quotient polynomial $q(X)$ is unrelated to the prime q in the ambient discussion.) Thus $r(X)$ is a constant. Substitute a for X to see that in fact $r=0$, and so $f(X)=q(X)(X-a)$. By induction, q has at most $d-1$ roots in k and we are done.

Now, since $(\mathbb{Z} / q \mathbb{Z})^{\times}$is a finite abelian group, it takes the form

$$
(\mathbb{Z} / q \mathbb{Z})^{\times} \approx \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{k} \mathbb{Z}, \quad 1<d_{1}\left|d_{2}\right| \cdots \mid d_{k}
$$

The additive description of the group shows that the equation $d_{k} X=0$ is solved by all $d_{1} d_{2} \cdots d_{k}$ group elements. Multiplicatively, the polynomial

$$
X^{d_{k}}-1 \in(\mathbb{Z} / q \mathbb{Z})[X]
$$

has $d_{1} d_{2} \cdots d_{k}$ roots. Thus $k=1$ and so $(\mathbb{Z} / q \mathbb{Z})^{\times}$is cyclic.

5. Groups of Order 8

Let G be a nonabelian group of order 8 . Then G must contain a subgroup $\langle a\rangle$ of order 4 but no element of order 8. The subgroup $\langle a\rangle$ is big enough to be normal.

Suppose that G has no other subgroup of order 4. Consider an element b that does not lie in the subgroup generated by a. Then we have (since G is not abelian)

$$
a^{4}=b^{2}=1, \quad b a=a^{3} b
$$

The displayed conditions describe the dihedral group D_{4}.
Otherwise G has a second subgroup $\langle b\rangle$ of order 4. The left cosets of $\langle a\rangle$ are itself and $b\langle a\rangle$, so that $b^{2} \in\langle a\rangle$. Thus $a^{2}=b^{2}$. Now we have

$$
a^{4}=b^{4}=1, \quad a^{2}=b^{2}, \quad b a=a^{3} b
$$

and so

$$
G=\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\} .
$$

To understand the group better, let

$$
c=a b
$$

Then

$$
c^{2}=a b \cdot a b=a^{4} b^{2}=b^{2}=a^{2}
$$

so that, since $c^{-1}=b^{3} a^{3}=a b^{3}=a^{3} b$,

$$
\begin{array}{llrl}
a b & =c, & b a & =a^{3} b=c^{-1} \\
b c & =b a b=a^{3} b^{2}=a, & c b & =a b^{2}=a^{3}=a^{-1} \\
c a & =a b a=b, & a c=a^{2} b=b^{3}=b^{-1}
\end{array}
$$

We see that the G is the group of Hamiltonian quaternions.

6. Groups of Order 12

Consider a nonabelian group G of order 12 .
Let $K=\left\{1, a, a^{2}\right\}$ be a 3-Sylow subgroup, so that $|G / K|=4$. The lefttranslation action of G on the coset space G / K gives a homomorphism

$$
\sigma: G \longrightarrow \operatorname{Aut}(G / K) \approx S_{4}, \quad g \longmapsto\left(\sigma_{g}: \gamma K \mapsto g \gamma K\right) .
$$

(Note that $\operatorname{Aut}(G / K)$ is a group even though G / K may not be.) The kernel of σ is a subgroup of K since for any g in the kernel we must have $g K=K$.

If σ has trivial kernel then $G=A_{4}$. (Recall that A_{n} is the unique index-2 subgroup of S_{n}. Indeed, if $H \subset S_{n}$ doesn't contain some 3-cycle then there are at least three cosets. So an index-2 subgroup contains all 3 -cycles, making it A_{n}.)

Otherwise, the kernel of σ is K, making K a normal subgroup of G. Let Q be a 2-Sylow subgroup of G. Since

$$
G=K Q, \quad K \triangleleft G, \quad K \cap Q=1_{G}
$$

G is a semidirect product of K and Q. The only question is how Q acts on the generator a of K by conjugation.

The order- 4 group Q is abelian. If its isomorphism type is $C_{2} \times C_{2}$ then it takes the form $Q=\{1, b, c, b c\}$ where $b^{2}=c^{2}=1$ and $c b=b c$. In this case, the only nontrivial action of Q on K is, up to relabeling,

$$
b a b=a, \quad c a c=a^{2},
$$

and so

$$
G=\left\langle a, b, c \mid a^{3}=b^{2}=c^{2}=1, b a=a b, c b=b c, c a=a^{2} c\right\rangle
$$

Here the element $a b$ has order 6 , and its inverse is $a^{2} b$, and its conjugate under the order 2 element c is its inverse,

$$
c a b c=a^{2} b
$$

Thus $G=D_{6}$.
On the other hand, if the isomorphism type of Q is C_{4} then $Q=\left\{1, b, b^{2}, b^{3}\right\}$. In this case, the only nontrivial action of Q on K is $b a b^{-1}=a^{2}$, and so

$$
G=\left\langle a, b \mid a^{3}=b^{4}=1, b a=a^{2} b\right\rangle .
$$

Alternatively, let $\tilde{a}=a b^{2}$. Then also

$$
G=\left\langle\tilde{a}, b \mid \tilde{a}^{6}=1, b^{2}=\tilde{a}^{3}, b \tilde{a}=\tilde{a}^{5} b\right\rangle .
$$

We don't yet know that such a group exists, but in fact it manifests itself as a subgroup of the cartesian product $S_{3} \times C_{4}$, specifically the subgroup generated by

$$
\tilde{a}=\left((123), g^{2}\right), \quad b=((12), g), \quad \text { where } g \text { generates } C_{4} .
$$

