
GROUP PRODUCTS

Many beginning group theory texts distinguish between the external direct prod-
uct and the internal direct product of groups. This writeup explains a viewpoint
from which there is literally no difference between them. The idea is to define the
product by its characterizing mapping property, describing how it interacts with
other groups, rather than by its internal details.

1. Definition of the Product via a Mapping Property

Definition 1.1 (Product of Two Groups). Let G1 and G2 be groups. A product
of G1 and G2 is

• a group G
• and homomorphisms πi : G −→ Gi for i = 1, 2 (called projections),

which we may view as the configuration

G
π1

~~}}}}}}}}
π2

  BBBBBBBB

G1 G2,

having the following property: For any group G̃ and homomorphisms fi : G̃ −→ Gi
for i = 1, 2,

G̃

f1
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G
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G1 G2,

there exists a unique homomorphism f : G̃ −→ G to make the resulting diagram
commute,

G̃

f1

��

f2
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G1 G2.

In natural language, the definition says that

Any collection of homomorphisms from a group into the produc-
tands factor uniquely through the product.
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2. Uniqueness

The mapping property definition of the product shows immediately that there
can be essentially only one such thing.

Proposition 2.1 (Uniqueness of the Product). Let G1 and G2 be groups, and let
(G, π1, π2) and (G′, π′1, π

′
2) both be products of G1 and G2. Then there is a unique

isomorphism from G to G′.

Proof. First we consider endomorphisms ε of G that make the following diagram
commute:

G

π1

��

π2

��

ε

��

G
π1

~~}}}}}}}}
π2

!!BBBBBBBB

G1 G2.

Clearly the identity endomorphism idG : G −→ G works. Furthermore, the map-
ping property characterization of G as a product of G1 and G2 shows that the
identity endomorphism is the only endomorphism ε of G that works. The same
observation applies to G′, of course.

Now, since G′ is a product of G1 and G2, the diagram

G

π1
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π2

��

G′

π′
1

~~||||||||
π′
2
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G1 G2

is uniquely completed,

G
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�
�
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G1 G2.

And since G is a product of G1 and G2, the diagram

G′

π′
1

��

π′
2
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G
π1
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G1 G2
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is uniquely completed,
G′

π′
1

��

π′
2

��

f ′

��
�
�
�
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G1 G2.

Concatenate the completed diagrams in two ways to get two more diagrams,

G

π1

��

π2





f ′◦f
��

G′

π′
1

��

π′
2

��

f◦f ′

��

G
π1

~~}}}}}}}}
π2

  
AAAAAAAA G′

π′
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2

!!CCCCCCCC

G1 G2 G1 G2.

As observed earlier in argument, it follows that f ′ ◦ f = idG and f ◦ f ′ = idG′ .
Thus f and f ′ are isomorphisms. �

3. Existence

We don’t yet know that a product of two groups G1 and G2 exists at all. One
construction of a product is indeed the cartesian product,

G = G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2},
with the group operation defined componentwise in terms of the given group oper-
ations,

(g1, g2) ◦G (g′1, g
′
2) = (g1 ◦G1 g

′
1, g2 ◦G2 g

′
2).

The projections are what they must be,

π1 : G −→ G1, π1(g1, g2) = g1,

π2 : G −→ G2, π2(g1, g2) = g2.

To verify the mapping property, suppose that we are given any group G̃ along with
homomorphisms

fi : G̃ −→ Gi, i = 1, 2.

Then the only set-map f : G̃ −→ G that makes the diagram

G̃

f1

��

f2

��

f

��

G
π1

~~}}}}}}}}
π2

  
AAAAAAAA

G1 G2

commute is the map

f : G̃ −→ G, f(g̃) = (f1(g̃), f2(g̃)),
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and this map is indeed a homomorphism.
The maps

ι1 : G1 −→ G, g1 7−→ (g1, e2),

ι2 : G2 −→ G, g2 7−→ (e1, g2)

are monomorphisms. Thus the cartesian product G contains an isomorphic copy
G1 × {e2} of G1 and and isomorphic copy {e1} × G2 of G2 as subgroups, but G1

and G2 are not literally subgroups of G.
The cartesian product G = G1×G2 is the external direct product of G1 and G2.

4. Another Manifestation of the Product

Suppose now that G1 and G2 are subgroups of some group G and that further-
more,

G1G2 = G, i.e., G = {g1g2 : g1 ∈ G1, g2 ∈ G2}
G1 ∩G2 = {eG},
G1 CG and G2 CG.

Then for all g1 ∈ G1 and g2 ∈ G2,

g1g2g
−1
1 g−1

2 =

{
g1g
′
1 = g′′1 for some g′′1 , since G1 CG,

g′2g
−1
2 = g′′2 for some g′′2 , since G2 CG.

And so g1g2g−1
1 g−1

2 ∈ G1∩G2 = {e}. That is, each of G1, G2 centralizes the other,

g1g2 = g2g1 for all g1 ∈ G1 and g2 ∈ G2.

Thus the maps

π1 : G −→ G1, π1(g1g2) = g1,

π2 : G −→ G2, π2(g1g2) = g2

are homomorphisms, and given any group G̃ and homomorphisms

fi : G̃ −→ Gi, i = 1, 2,

the map

f : G̃ −→ G, f(g̃) = f1(g̃)f2(g̃)

is the unique homomorphism that gives the suitable commutative diagram. In sum,
G satisfies the characterizing mapping property of to be a product of G1 and G2.

A group G of the form described in this section is the internal direct product of
G1 and G2.

We know from earlier in the handout that an internal direct product G of G1

and G2 must be uniquely isomorphic to the cartesian product G1 ×G2. Of course,
the unique isomorphism is clear in any case,

g1g2 7−→ (g1, g2).
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5. The Product of an Arbitrary Collection of Groups

Using the mapping-theoretic notion of product, the generalization from two
groups to an arbitrary collection of groups is effortless.

Definition 5.1 (Product of a Collection of Groups). Let A be an arbitrary index
set, and consider a collection of groups indexed by A,

{Gα : α ∈ A}.
A product of the groups {Gα} is

• a group G
• and homomorphisms πα : G −→ Gα for α ∈ A (called projections),

having the following property: For any group G̃ and homomorphisms fα : G̃ −→ Gα
for α ∈ A, there exists a unique homomorphism f : G̃ −→ G such that

πα ◦ f = fα, α ∈ A.

As before, it follows immediately that any two products of the groups {Gα} are
uniquely isomorphic.

Checking whether the constructions of external and internal products for an
arbitrary collection of groups both work requires a bit of care when the index set A
is infinite. The details are omitted here. The salient point is that working with the
mapping-theoretic definition requires no distinction between the twofold case and
the arbitrary case.

More importantly, one can also use the same mapping property to describe the
product in other categories, e.g., in the environment where the sets are topolog-
ical spaces rather than groups and the arrows are continuous maps rather than
homomorphisms. Uniqueness of the product is always immediate as above (our
uniqueness argument made no use of the particulars of groups or homomorphisms),
but addressing existence is a category-specific matter.

One can also define a coproduct in any category by reversing the arrows in the
product definition. The interested reader might try to construct a coproduct of two
groups. An obstacle does arise.


