GROUP PRODUCTS

Many beginning group theory texts distinguish between the external direct product and the internal direct product of groups. This writeup explains a viewpoint from which there is literally no difference between them. The idea is to define the product by its characterizing mapping property, describing how it interacts with other groups, rather than by its internal details.

1. Definition of the Product via a Mapping Property

Definition 1.1 (Product of Two Groups). Let G_{1} and G_{2} be groups. A product of G_{1} and G_{2} is

- a group G
- and homomorphisms $\pi_{i}: G \longrightarrow G_{i}$ for $i=1,2$ (called projections),
which we may view as the configuration

having the following property: For any group \widetilde{G} and homomorphisms $f_{i}: \widetilde{G} \longrightarrow G_{i}$ for $i=1,2$,

there exists a unique homomorphism $f: \widetilde{G} \longrightarrow G$ to make the resulting diagram commute,

In natural language, the definition says that
Any collection of homomorphisms from a group into the productands factor uniquely through the product.

2. Uniqueness

The mapping property definition of the product shows immediately that there can be essentially only one such thing.

Proposition 2.1 (Uniqueness of the Product). Let G_{1} and G_{2} be groups, and let $\left(G, \pi_{1}, \pi_{2}\right)$ and $\left(G^{\prime}, \pi_{1}^{\prime}, \pi_{2}^{\prime}\right)$ both be products of G_{1} and G_{2}. Then there is a unique isomorphism from G to G^{\prime}.

Proof. First we consider endomorphisms ϵ of G that make the following diagram commute:

Clearly the identity endomorphism $\operatorname{id}_{G}: G \longrightarrow G$ works. Furthermore, the mapping property characterization of G as a product of G_{1} and G_{2} shows that the identity endomorphism is the only endomorphism ϵ of G that works. The same observation applies to G^{\prime}, of course.

Now, since G^{\prime} is a product of G_{1} and G_{2}, the diagram

is uniquely completed,

And since G is a product of G_{1} and G_{2}, the diagram

is uniquely completed,

Concatenate the completed diagrams in two ways to get two more diagrams,

As observed earlier in argument, it follows that $f^{\prime} \circ f=\operatorname{id}_{G}$ and $f \circ f^{\prime}=\operatorname{id}_{G^{\prime}}$. Thus f and f^{\prime} are isomorphisms.

3. Existence

We don't yet know that a product of two groups G_{1} and G_{2} exists at all. One construction of a product is indeed the cartesian product,

$$
G=G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right): g_{1} \in G_{1}, g_{2} \in G_{2}\right\}
$$

with the group operation defined componentwise in terms of the given group operations,

$$
\left(g_{1}, g_{2}\right) \circ_{G}\left(g_{1}^{\prime}, g_{2}^{\prime}\right)=\left(g_{1} \circ_{G_{1}} g_{1}^{\prime}, g_{2} \circ_{G_{2}} g_{2}^{\prime}\right)
$$

The projections are what they must be,

$$
\begin{array}{ll}
\pi_{1}: G \longrightarrow G_{1}, & \pi_{1}\left(g_{1}, g_{2}\right)=g_{1} \\
\pi_{2}: G \longrightarrow G_{2}, & \pi_{2}\left(g_{1}, g_{2}\right)=g_{2}
\end{array}
$$

To verify the mapping property, suppose that we are given any group \widetilde{G} along with homomorphisms

$$
f_{i}: \widetilde{G} \longrightarrow G_{i}, \quad i=1,2
$$

Then the only set-map $f: \widetilde{G} \longrightarrow G$ that makes the diagram

commute is the map

$$
f: \tilde{G} \longrightarrow G, \quad f(\tilde{g})=\left(f_{1}(\tilde{g}), f_{2}(\tilde{g})\right)
$$

and this map is indeed a homomorphism.
The maps

$$
\begin{array}{ll}
\iota_{1}: G_{1} \longrightarrow G, & g_{1} \longmapsto\left(g_{1}, e_{2}\right), \\
\iota_{2}: G_{2} \longrightarrow G, & g_{2} \longmapsto\left(e_{1}, g_{2}\right)
\end{array}
$$

are monomorphisms. Thus the cartesian product G contains an isomorphic copy $G_{1} \times\left\{e_{2}\right\}$ of G_{1} and and isomorphic copy $\left\{e_{1}\right\} \times G_{2}$ of G_{2} as subgroups, but G_{1} and G_{2} are not literally subgroups of G.

The cartesian product $G=G_{1} \times G_{2}$ is the external direct product of G_{1} and G_{2}.

4. Another Manifestation of the Product

Suppose now that G_{1} and G_{2} are subgroups of some group G and that furthermore,

$$
\begin{aligned}
& G_{1} G_{2}=G \text {, i.e., } G=\left\{g_{1} g_{2}: g_{1} \in G_{1}, g_{2} \in G_{2}\right\} \\
& G_{1} \cap G_{2}=\left\{e_{G}\right\}, \\
& G_{1} \triangleleft G \text { and } G_{2} \triangleleft G .
\end{aligned}
$$

Then for all $g_{1} \in G_{1}$ and $g_{2} \in G_{2}$,

$$
g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}= \begin{cases}g_{1} g_{1}^{\prime}=g_{1}^{\prime \prime} & \text { for some } g_{1}^{\prime \prime}, \text { since } G_{1} \triangleleft G \\ g_{2}^{\prime} g_{2}^{-1}=g_{2}^{\prime \prime} & \text { for some } g_{2}^{\prime \prime}, \text { since } G_{2} \triangleleft G\end{cases}
$$

And so $g_{1} g_{2} g_{1}^{-1} g_{2}^{-1} \in G_{1} \cap G_{2}=\{e\}$. That is, each of G_{1}, G_{2} centralizes the other,

$$
g_{1} g_{2}=g_{2} g_{1} \text { for all } g_{1} \in G_{1} \text { and } g_{2} \in G_{2}
$$

Thus the maps

$$
\begin{array}{ll}
\pi_{1}: G \longrightarrow G_{1}, & \pi_{1}\left(g_{1} g_{2}\right)=g_{1} \\
\pi_{2}: G \longrightarrow G_{2}, & \pi_{2}\left(g_{1} g_{2}\right)=g_{2}
\end{array}
$$

are homomorphisms, and given any group \widetilde{G} and homomorphisms

$$
f_{i}: \widetilde{G} \longrightarrow G_{i}, \quad i=1,2
$$

the map

$$
f: \widetilde{G} \longrightarrow G, \quad f(\widetilde{g})=f_{1}(\widetilde{g}) f_{2}(\widetilde{g})
$$

is the unique homomorphism that gives the suitable commutative diagram. In sum, G satisfies the characterizing mapping property of to be a product of G_{1} and G_{2}.

A group G of the form described in this section is the internal direct product of G_{1} and G_{2}.

We know from earlier in the handout that an internal direct product G of G_{1} and G_{2} must be uniquely isomorphic to the cartesian product $G_{1} \times G_{2}$. Of course, the unique isomorphism is clear in any case,

$$
g_{1} g_{2} \longmapsto\left(g_{1}, g_{2}\right)
$$

5. The Product of an Arbitrary Collection of Groups

Using the mapping-theoretic notion of product, the generalization from two groups to an arbitrary collection of groups is effortless.
Definition 5.1 (Product of a Collection of Groups). Let A be an arbitrary index set, and consider a collection of groups indexed by A,

$$
\left\{G_{\alpha}: \alpha \in A\right\}
$$

A product of the groups $\left\{G_{\alpha}\right\}$ is

- a group G
- and homomorphisms $\pi_{\alpha}: G \longrightarrow G_{\alpha}$ for $\alpha \in A$ (called projections),
having the following property: For any group \widetilde{G} and homomorphisms $f_{\alpha}: \widetilde{G} \longrightarrow G_{\alpha}$ for $\alpha \in A$, there exists a unique homomorphism $f: \widetilde{G} \longrightarrow G$ such that

$$
\pi_{\alpha} \circ f=f_{\alpha}, \quad \alpha \in A
$$

As before, it follows immediately that any two products of the groups $\left\{G_{\alpha}\right\}$ are uniquely isomorphic.

Checking whether the constructions of external and internal products for an arbitrary collection of groups both work requires a bit of care when the index set A is infinite. The details are omitted here. The salient point is that working with the mapping-theoretic definition requires no distinction between the twofold case and the arbitrary case.

More importantly, one can also use the same mapping property to describe the product in other categories, e.g., in the environment where the sets are topological spaces rather than groups and the arrows are continuous maps rather than homomorphisms. Uniqueness of the product is always immediate as above (our uniqueness argument made no use of the particulars of groups or homomorphisms), but addressing existence is a category-specific matter.

One can also define a coproduct in any category by reversing the arrows in the product definition. The interested reader might try to construct a coproduct of two groups. An obstacle does arise.

