THE ALTERNATING GROUP IS SIMPLE

1. Some Properties of the Symmetric Group

Let $n \in \mathbb{Z}_{>0}$ be a positive integer, and let S_n denote the group of permutations of n letters.

The fact that every element of S_n can be written (nonuniquely) as a product of transpositions (2-cycles) is self-evident.

The fact that every element of S_n can be written as a product of an even number of transpositions, or as an odd number of transpositions, but *not both* is not at all self-evident. See Gallian for a short elementary proof. However, granting the fact, the identity (composing from right to left, as seems to be the practice in introductory texts)

$$(1 2 3 \cdots k) = (1 k) \cdots (1 3)(1 2)$$

shows that that a k-cycle is even if and only if k is odd.

The subgroup of even permutations in S_n is the *alternating* group A_n . Its name comes from the fact that if its elements are viewed as even permutations of the symbols r_1, \ldots, r_n then they preserve the polynomial expression

$$\prod_{i < j} (r_i - r_j),$$

whereas the odd permutations negate the expression.

An element of S_n can also be written

$$\tau = \begin{pmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{pmatrix},$$

where $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\} = \{1, \ldots, n\}$ and typically $x_1 = 1, \ldots, x_n = n$ or similarly for the *y*-values. And an element of S_n can be written as a product of disjoint cycles,

$$\sigma = (a_1 \cdots a_k)(b_1 \cdots b_\ell) \cdots, \qquad \{a_i\} \sqcup \{b_j\} \sqcup \cdots = \{1, \dots, n\}$$

Clearly the order of σ is the least common multiple of the lengths of its cycles.

Proposition 1.1. The conjugation-action of S_n on itself restricts to the subset of elements having each particular cycle-structure, and the action is transitive on each such subset.

Proof. If

$$\sigma = (a_1 \cdots a_k)(b_1 \cdots b_\ell) \cdots$$

and

$$\tau = \begin{pmatrix} \alpha_1 & \cdots & \alpha_k & \beta_1 & \cdots & \beta_\ell & \cdots \\ a_1 & \cdots & a_k & b_1 & \cdots & b_\ell & \cdots \end{pmatrix}$$

then (composing right-to-left)

$$\tau^{-1}\sigma\tau = (\alpha_1 \cdots \alpha_k)(\beta_1 \cdots \beta_\ell)\cdots.$$

2. SIMPLICITY OF THE ALTERNATING GROUP

Let G be a group. Recall that a subgroup of G is *normal* if its normalizer is all of G, or equivalently, if it is the kernel of a homomorphism out of G. Every subgroup of an abelian group is normal.

Since the alternating group ${\cal A}_n$ is the kernel of the homomorphism

$$S_n \longrightarrow \mathbb{Z}/2\mathbb{Z}, \quad \sigma \longmapsto \text{parity of } \sigma,$$

it follows that A_n is a normal subgroup of S_n . We wonder about normal subgroups of A_n in turn. For n = 4, the Klein four-group

$$V = \{e, (12)(3, 4), (13)(24), (14)(23)\}$$

is normal in A_4 because conjugation preserves cycle-structure. However, the Klein four-group turns out to be the only example.

Definition 2.1. A group G is simple if it has no nontrivial normal subgroups.

As discussed in Gallian, the problem of classifying all finite simple groups has been a long, titanic mathematical endeavor. Our aim here is more modest.

Proposition 2.2. The alternating group A_n is simple for $n \neq 4$.

Proof. Since $A_1 \approx A_2 \approx \{\cdot\}$ and $A_3 \approx \mathbb{Z}/3\mathbb{Z}$, we may take $n \ge 5$. The equalities $(a b)(c d) = (a c b)(a c d), \qquad (a b)(b c) = (a b c)$

show that A_n is generated by the set of its 3-cycles. Also, beyond Proposition 1.1, all 3-cycles are conjugate in A_n . Indeed, each $(a_1 a_2 a_3)$ takes the form $\tau^{-1}(123)\tau$ for some $\tau \in S_n$; if τ is even then we are done, and if τ is odd then also $(a_1 a_2 a_3) = \tau^{-1}(45)(123)(45)\tau$ with $(45)\tau$ even. This argument uses the condition $n \ge 5$, but it does not assume that (45) and τ are disjoint. The upshot is that given a normal subgroup $N \neq \{e\}$ of A_n where $n \ge 5$, we need only to show that N contains a 3-cycle. Now reason as follows.

• If N contains an element $\sigma = (1 \cdots r)\tau$ where $r \ge 4$, then let $\delta = (1 \, 2 \, 3)$ and compute

 $\sigma^{-1} \cdot \delta^{-1} \sigma \delta = (r \cdots 1)(1 \, 3 \, 2)(1 \cdots r)(1 \, 2 \, 3) = (2 \, 3 \, r).$

Thus N contains a 3-cycle as desired. The same argument holds for any $\sigma = (a_1 \cdots a_r)\tau$, using $\delta = (a_1 a_2 a_3)$. We use this same idea for notational ease without comment from now on.

• If N contains an element $\sigma = (1\,2\,3)(4\,5\,6)\tau$, then let $\delta = (1\,2\,4)$ and compute that we are done by the previous bullet,

 $\sigma^{-1} \cdot \delta^{-1} \sigma \delta = (1\,3\,2)(4\,6\,5)(1\,4\,2)(1\,2\,3)(4\,5\,6)(1\,2\,4) = (1\,2\,4\,3\,6).$

- If N contains an element $\sigma = (1\,2\,3)\tau$ where τ is a product of 2-cycles, then $\sigma^2 = (1\,3\,2)$ and we are done.
- If N contains an element $\sigma = (12)(34)\tau$ where τ is a product of 2-cycles, then let $\delta = (123)$ so that $\sigma^{-1}\delta^{-1}\sigma\delta = (14)(23)$. Next (using $n \ge 5$ here),

$$(152)(14)(23)(125) = (13)(45),$$

and then we are done by the first bullet,

$$(14)(23)(13)(45) = (12345).$$

This completes the proof.