
THE ALTERNATING GROUP IS SIMPLE

1. Some Properties of the Symmetric Group

Let n ∈ Z>0 be a a positive integer, and let Sn denote the group of permutations
of n letters.

The fact that every element of Sn can be written (nonuniquely) as a product of
transpositions (2-cycles) is self-evident.

The fact that every element of Sn can be written as a product of an even number
of transpositions, or as an odd number of transpositions, but not both is not at
all self-evident. See Gallian for a short elementary proof. However, granting the
fact, the identity (composing from right to left, as seems to be the practice in
introductory texts)

(1 2 3 · · · k) = (1 k) · · · (1 3)(1 2)

shows that that a k-cycle is even if and only if k is odd.
The subgroup of even permutations in Sn is the alternating group An. Its name

comes from the fact that if its elements are viewed as even permutations of the
symbols r1, . . . , rn then they preserve the polynomial expression∏

i<j

(ri − rj),

whereas the odd permutations negate the expression.

An element of Sn can also be written

τ =

(
x1 · · · xn
y1 · · · yn

)
,

where {x1, . . . , xn} = {y1, . . . , yn} = {1, . . . , n} and typically x1 = 1, . . . , xn = n
or similarly for the y-values. And an element of Sn can be written as a product of
disjoint cycles,

σ = (a1 · · · ak)(b1 · · · b`) · · · , {ai} t {bj} t · · · = {1, . . . , n}.
Clearly the order of σ is the least common multiple of the lengths of its cycles.

Proposition 1.1. The conjugation-action of Sn on itself restricts to the subset of
elements having each particular cycle-structure, and the action is transitive on each
such subset.

Proof. If
σ = (a1 · · · ak)(b1 · · · b`) · · ·

and

τ =

(
α1 · · · αk β1 · · · β` · · ·
a1 · · · ak b1 · · · b` · · ·

)
then (composing right-to-left)

τ−1στ = (α1 · · · αk)(β1 · · · β`) · · · .
�
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2. Simplicity of the Alternating Group

Let G be a group. Recall that a subgroup of G is normal if its normalizer is
all of G, or equivalently, if it is the kernel of a homomorphism out of G. Every
subgroup of an abelian group is normal.

Since the alternating group An is the kernel of the homomorphism

Sn −→ Z/2Z, σ 7−→ parity of σ,

it follows that An is a normal subgroup of Sn. We wonder about normal subgroups
of An in turn. For n = 4, the Klein four-group

V = {e, (1 2)(3, 4), (1 3)(2 4), (1 4)(2 3)}
is normal in A4 because conjugation preserves cycle-structure. However, the Klein
four-group turns out to be the only example.

Definition 2.1. A group G is simple if it has no nontrivial normal subgroups.

As discussed in Gallian, the problem of classifying all finite simple groups has
been a long, titanic mathematical endeavor. Our aim here is more modest.

Proposition 2.2. The alternating group An is simple for n 6= 4.

Proof. Since A1 ≈ A2 ≈ {·} and A3 ≈ Z/3Z, we may take n ≥ 5. The equalities

(a b)(c d) = (a c b)(a c d), (a b)(b c) = (a b c)

show that An is generated by the set of its 3-cycles. Also, beyond Proposition 1.1,
all 3-cycles are conjugate in An. Indeed, each (a1 a2 a3) takes the form τ−1(1 2 3)τ
for some τ ∈ Sn; if τ is even then we are done, and if τ is odd then also (a1 a2 a3) =
τ−1(4 5)(1 2 3)(4 5)τ with (4 5)τ even. This argument uses the condition n ≥ 5, but
it does not assume that (4 5) and τ are disjoint. The upshot is that given a normal
subgroup N 6= {e} of An where n ≥ 5, we need only to show that N contains a
3-cycle. Now reason as follows.

• If N contains an element σ = (1 · · · r)τ where r ≥ 4, then let δ = (1 2 3)
and compute

σ−1 · δ−1σδ = (r · · · 1)(1 3 2)(1 · · · r)(1 2 3) = (2 3 r).

Thus N contains a 3-cycle as desired. The same argument holds for any
σ = (a1 · · · ar)τ , using δ = (a1 a2 a3). We use this same idea for notational
ease without comment from now on.

• If N contains an element σ = (1 2 3)(4 5 6)τ , then let δ = (1 2 4) and com-
pute that we are done by the previous bullet,

σ−1 · δ−1σδ = (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4) = (1 2 4 3 6).

• If N contains an element σ = (1 2 3)τ where τ is a product of 2-cycles, then
σ2 = (1 3 2) and we are done.

• If N contains an element σ = (1 2)(3 4)τ where τ is a product of 2-cycles,
then let δ = (1 2 3) so that σ−1δ−1σδ = (1 4)(2 3). Next (using n ≥ 5 here),

(1 5 2)(1 4)(2 3)(1 2 5) = (1 3)(4 5),

and then we are done by the first bullet,

(1 4)(2 3)(1 3)(4 5) = (1 2 3 4 5).

This completes the proof. �


