THE ALTERNATING GROUP IS SIMPLE

1. Some Properties of the Symmetric Group

Let $n \in \mathbb{Z}_{>0}$ be a a positive integer, and let S_{n} denote the group of permutations of n letters.

The fact that every element of S_{n} can be written (nonuniquely) as a product of transpositions (2-cycles) is self-evident.

The fact that every element of S_{n} can be written as a product of an even number of transpositions, or as an odd number of transpositions, but not both is not at all self-evident. See Gallian for a short elementary proof. However, granting the fact, the identity (composing from right to left, as seems to be the practice in introductory texts)

$$
(123 \cdots k)=(1 k) \cdots(13)(12)
$$

shows that that $a k$-cycle is even if and only if k is odd.
The subgroup of even permutations in S_{n} is the alternating group A_{n}. Its name comes from the fact that if its elements are viewed as even permutations of the symbols r_{1}, \ldots, r_{n} then they preserve the polynomial expression

$$
\prod_{i<j}\left(r_{i}-r_{j}\right)
$$

whereas the odd permutations negate the expression.
An element of S_{n} can also be written

$$
\tau=\left(\begin{array}{lll}
x_{1} & \cdots & x_{n} \\
y_{1} & \cdots & y_{n}
\end{array}\right)
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}=\{1, \ldots, n\}$ and typically $x_{1}=1, \ldots, x_{n}=n$ or similarly for the y-values. And an element of S_{n} can be written as a product of disjoint cycles,

$$
\sigma=\left(a_{1} \cdots a_{k}\right)\left(b_{1} \cdots b_{\ell}\right) \cdots, \quad\left\{a_{i}\right\} \sqcup\left\{b_{j}\right\} \sqcup \cdots=\{1, \ldots, n\}
$$

Clearly the order of σ is the least common multiple of the lengths of its cycles.
Proposition 1.1. The conjugation-action of S_{n} on itself restricts to the subset of elements having each particular cycle-structure, and the action is transitive on each such subset.
Proof. If

$$
\sigma=\left(a_{1} \cdots a_{k}\right)\left(b_{1} \cdots b_{\ell}\right) \cdots
$$

and

$$
\tau=\left(\begin{array}{lllllll}
\alpha_{1} & \cdots & \alpha_{k} & \beta_{1} & \cdots & \beta_{\ell} & \cdots \\
a_{1} & \cdots & a_{k} & b_{1} & \cdots & b_{\ell} & \cdots
\end{array}\right)
$$

then (composing right-to-left)

$$
\tau^{-1} \sigma \tau=\left(\alpha_{1} \cdots \alpha_{k}\right)\left(\beta_{1} \cdots \beta_{\ell}\right) \cdots
$$

2. Simplicity of the Alternating Group

Let G be a group. Recall that a subgroup of G is normal if its normalizer is all of G, or equivalently, if it is the kernel of a homomorphism out of G. Every subgroup of an abelian group is normal.

Since the alternating group A_{n} is the kernel of the homomorphism

$$
S_{n} \longrightarrow \mathbb{Z} / 2 \mathbb{Z}, \quad \sigma \longmapsto \text { parity of } \sigma,
$$

it follows that A_{n} is a normal subgroup of S_{n}. We wonder about normal subgroups of A_{n} in turn. For $n=4$, the Klein four-group

$$
V=\{e,(12)(3,4),(13)(24),(14)(23)\}
$$

is normal in A_{4} because conjugation preserves cycle-structure. However, the Klein four-group turns out to be the only example.

Definition 2.1. A group G is simple if it has no nontrivial normal subgroups.
As discussed in Gallian, the problem of classifying all finite simple groups has been a long, titanic mathematical endeavor. Our aim here is more modest.

Proposition 2.2. The alternating group A_{n} is simple for $n \neq 4$.
Proof. Since $A_{1} \approx A_{2} \approx\{\cdot\}$ and $A_{3} \approx \mathbb{Z} / 3 \mathbb{Z}$, we may take $n \geq 5$. The equalities

$$
(a b)(c d)=(a c b)(a c d), \quad(a b)(b c)=(a b c)
$$

show that A_{n} is generated by the set of its 3 -cycles. Also, beyond Proposition 1.1, all 3 -cycles are conjugate in A_{n}. Indeed, each $\left(a_{1} a_{2} a_{3}\right)$ takes the form $\tau^{-1}(123) \tau$ for some $\tau \in S_{n}$; if τ is even then we are done, and if τ is odd then also $\left(a_{1} a_{2} a_{3}\right)=$ $\tau^{-1}(45)(123)(45) \tau$ with (45) τ even. This argument uses the condition $n \geq 5$, but it does not assume that (45) and τ are disjoint. The upshot is that given a normal subgroup $N \neq\{e\}$ of A_{n} where $n \geq 5$, we need only to show that N contains a 3 -cycle. Now reason as follows.

- If N contains an element $\sigma=(1 \cdots r) \tau$ where $r \geq 4$, then let $\delta=(123)$ and compute

$$
\sigma^{-1} \cdot \delta^{-1} \sigma \delta=(r \cdots 1)(132)(1 \cdots r)(123)=(23 r)
$$

Thus N contains a 3 -cycle as desired. The same argument holds for any $\sigma=\left(a_{1} \cdots a_{r}\right) \tau$, using $\delta=\left(a_{1} a_{2} a_{3}\right)$. We use this same idea for notational ease without comment from now on.

- If N contains an element $\sigma=(123)(456) \tau$, then let $\delta=(124)$ and compute that we are done by the previous bullet,

$$
\sigma^{-1} \cdot \delta^{-1} \sigma \delta=(132)(465)(142)(123)(456)(124)=(12436)
$$

- If N contains an element $\sigma=(123) \tau$ where τ is a product of 2 -cycles, then $\sigma^{2}=\left(\begin{array}{ll}132)\end{array}\right)$ and we are done.
- If N contains an element $\sigma=(12)(34) \tau$ where τ is a product of 2 -cycles, then let $\delta=(123)$ so that $\sigma^{-1} \delta^{-1} \sigma \delta=(14)(23)$. Next (using $n \geq 5$ here),

$$
(152)(14)(23)(125)=(13)(45)
$$

and then we are done by the first bullet,

$$
(14)(23)(13)(45)=(12345)
$$

This completes the proof.

