COSETS IN LAGRANGE'S THEOREM AND IN GROUP ACTIONS

1. Lagrange's Theorem

Let G be a group and H a subgroup, not necessarily normal.
Definition 1.1 (Left H-equivalence). Two group elements $g, g^{\prime} \in G$ are left H equivalent if they produce the same left coset of H,

$$
g \sim_{L} g^{\prime} \quad \text { if } g H=g^{\prime} H .
$$

The verification that left H-equivalence is indeed an equivalence relation on G is straightforward. Thus left H-equivalence partitions G into disjoint equivalence classes, the left cosets,

$$
G=\bigsqcup g H \quad \text { (disjoint union of cosets, not union over all } g \in G \text {). }
$$

The left coset space is the set of left cosets,

$$
G / H=\{g H\} \quad \text { (each element of the set is itself a coset). }
$$

Also, one shows instantly that

$$
g \sim_{L} g^{\prime} \Longleftrightarrow g^{-1} g^{\prime} \in H, \quad g, g^{\prime} \in G .
$$

Naturally we could also define right H-equivalence and repeat the ideas,

$$
G=\bigsqcup H g, \quad H \backslash G=\{H g\}, \quad g \sim_{R} g^{\prime} \Longleftrightarrow g^{\prime} g^{-1} \in H
$$

Now, for any $g \in G$ we have a bijection between H and $g H$,

$$
H \longleftrightarrow g H, \quad h \longleftrightarrow g h .
$$

And similarly for H and right cosets Hg . Consequently all cosets have the same cardinality,

$$
|g H|=|H g|=|H|, \quad g \in G .
$$

From the decompositions $G=\bigsqcup g H=\bigsqcup H g$ we then get

$$
|G|=|G / H| \cdot|H|=|H \backslash G| \cdot|H| .
$$

Define the index of H in G to be the shared cardinality of the coset spaces,

$$
[G: H]=|G / H|=|H \backslash G| .
$$

If G is finite then $[G: H]$ is a positive integer. But by the previous-but-first display,

$$
[G: H]=|G| /|H| .
$$

And thus:
Theorem 1.2 (Lagrange). Let G be a finite group, and let H be a subgroup of G. Then $|H|$ divides $|G|$.

Lagrange's Theorem has many corollaries:

- If G is a prime-order group then it is cyclic.
- if G is a finite group and $a \in G$ then $|a|||G|$.
- (Euler) Let $n \in \mathbb{Z}_{>0}$. Then $a^{\varphi(n)}=1 \bmod n$ if $\operatorname{gcd}(a, n)=1$.
- (Fermat) Let p be prime. Then $a^{p-1}=1 \bmod p$ if $p \nmid a$.

2. Multiplicity of Indices

Let A be a supergroup of B, in turn a supergroup of C,

$$
C \subset B \subset A
$$

Thus

$$
A=\bigsqcup_{i} a_{i} B, \quad[A: B]=\left|\left\{a_{i}\right\}\right|
$$

and

$$
B=\bigsqcup_{j} b_{j} C, \quad[B: C]=\left|\left\{b_{j}\right\}\right| .
$$

Essentially immediately,

$$
A=\bigsqcup_{i, j} a_{i} b_{j} C
$$

Indeed, the union in the previous display is disjoint because if $a_{i}^{\prime} b_{j}^{\prime} C=a_{i} b_{j} C$ then the cosets $a_{i}^{\prime} B$ and $a_{i} B$ are nondisjoint, making them equal, so that $a_{i}^{\prime}=a_{i}$, and then we have $b_{j}^{\prime} C=b_{j} C$, giving $b_{j}^{\prime}=b_{j}$. Since the union is disjoint and the (i, j) th coset contains the product $a_{i} b_{j}$, no two such products are equal unless they involve the same a_{i} and the same b_{j}. The multiplicativity of indices follows,

$$
[A: C]=\left|\left\{a_{i} b_{j}\right\}\right|=\left|\left\{a_{i}\right\}\right|\left|\left\{b_{j}\right\}\right|=[A: B][B: C]
$$

3. Cosets and Actions

Consider a transitive action

$$
G \times S \longrightarrow S
$$

Here G is a group, S is a set, and the action takes any point of S to any other.
Fix a point $x \in S$, and let G_{x} be its isotropy subgroup,

$$
G_{x}=\{g \in G: g x=x\} .
$$

As we have discussed, G_{x} is indeed a subgroup of G, but it need not be normal.
There is a natural set bijection between the resulting left coset space and the set,

$$
G / G_{x} \longleftrightarrow S, \quad g G_{x} \longleftrightarrow g x .
$$

To see this, recall that G / G_{x} is the disjoint union of the left cosets,

$$
G=\bigsqcup g G_{x}
$$

and for any $g, g^{\prime} \in G$,

$$
g^{\prime} G_{x}=g G_{x} \Longleftrightarrow g^{-1} g^{\prime} \in G_{x} \Longleftrightarrow g^{-1} g^{\prime} x=x \Longleftrightarrow g^{\prime} x=g x
$$

That is, each coset collectively moves x to a well-defined point of S, and distinct cosets move x to distinct points.

For an example, let

$$
\begin{aligned}
G & =\mathrm{SL}_{2}(\mathbb{R}) \\
S & =\mathcal{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}
\end{aligned}
$$

Then G acts on S by the formula

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](z)=\frac{a z+b}{c z+d}
$$

One key fact here is that

$$
\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]\right)(z)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right](z)\right)
$$

and another is that

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

Now take our particular point to be

$$
x=i .
$$

Then its isotropy groups is the 2-by-2 special orthogonal group,

$$
\begin{aligned}
G_{x} & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{R}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](i)=i\right\} \\
& =\left\{\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{R})\right\} \\
& =\mathrm{SO}(2)
\end{aligned}
$$

Thus the complex upper half plane has a completely real group-theoretic description as a coset space,

$$
\mathcal{H} \approx \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2)
$$

No claim is being made here that the quotient space carries a group structure.

