
GROUP ACTIONS

1. Review of Homomorphisms

Recall that if (G, ◦G) and (G̃, ◦ eG) are groups then a set-map

f : G −→ G̃

is a homomorphism if the following diagram commutes:

G×G
(f,f)

//

◦G

��

G̃× G̃

◦ eG
��

G
f

// G̃.

That is, the map f must satisfy the condition

f(g ◦G g′) = f(g) ◦ eG f(g′), g, g′ ∈ G.

An injective homomorphism is a monomorphism. A surjective homomorphism is
an epimorphism. A bijective homomorphism is an isomorphism. A homomorphism
from a group back to itself is an endomorphism and an isomorphism from a group
back to itself is an automorphism.

Immediately in consequence of the definition, any homomorphism satisfies

f(eG) = e eG,

f(g−1) = (f(g))−1 for all g ∈ G,

and
f is a monomorphism if and only if its kernel is trivial.

Also, we showed in class that the inverse map of an isomorphism is again an iso-
morphism. That is, if a bijective set-map between groups preserves algebra then so
does its inverse.

And the subgroup test quickly shows that for any homomorphism,
• ker(f) is a subgroup of G.
• im(f) is a subgroup of G̃.
• f−1(H̃) is a subgroup of G for any subgroup H̃ of G̃.

If G is abelian then so is any homomorphic image f(G).

2. Group Actions

Recall also that if G is a group and S is a set then an action of G on S is a map

G× S −→ S, (g, s) 7−→ gs

such that

es = s for all s ∈ S,

(gg′)s = g(g′s) for all g, g′ ∈ G, s ∈ S.
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The formula (gg′)s = g(g′s) (called the associativity rule for the action) features one
group product and three group actions. The associativity rule shows immediately
that

g(g−1s) = s, g ∈ G, s ∈ S.

3. Isotropy

For any group action, for any element s of the set acted on, the subset of G that
fixes s,

Gs = {g ∈ G : gs = s},
is the isotropy subgroup of s. Verifying that Gs is indeed a subgroup is straightfor-
ward, using the last display of the previous paragraph.

4. Application of Isotropy: Centralizing Subgroups

Especially, any group G acts on its own power set P(G) in two ways:
• By left-translation, (g, S) 7→ gS = {gs : s ∈ S}.
• By left-conjugation, (g, S) 7→ gSg−1 = {gsg−1 : s ∈ S}.

For any cardinal number k, the two actions restrict to actions of G on the set of
cardinality-k subsets of G. In particular, when k = 1 they restrict to actions of G
on itself. The conjugation action also restricts to the set of subgroups of G, and to
the set of cardinality-k subgroups of G for any k.

The centralizer of any group element g̃ is defined as an isotropy subgroup,

Z(g̃) = g̃-isotropy under the conjugation action of G on itself,

That is, the centralizer of g̃ is the subgroup of group elements that commute with g̃,

Z(g̃) = {g ∈ G : gg̃ = g̃g}.
The centralizer of g̃ is a supergroup of the subgroup of G generated by g̃.

For any subset S of G, the centralizer of S is the subgroup of group elements
that commute with S,

Z(S) =
⋂
g̃∈S

Z(g̃) = {g ∈ G : gg̃ = g̃g for all g̃ ∈ S}.

The centralizer of S need not contain S. In particular the center of the group is
the subgroup of elements that commute with the entire group,

Z(G) = {g ∈ G : gg̃ = g̃g for all g̃ ∈ G}.
A group may have abelian subgroups that are not central, since central connotes
commuting with the entire group.

5. Application of Isotropy: Normalizing Subgroups

The normalizer of any subset S of G is its isotropy subgroup under the action
of G on its power set,

N(S) = {g ∈ G : gSg−1 = S}.
Elements of N(S) need not fix S pointwise under conjugation. Conjugation by
elements of N(S) may permute S, but it may not move elements out of S.

Especially, for any homomorphism f : G −→ G̃,

N(ker(f)) = G.
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Indeed, for any k ∈ ker(f) and any g ∈ G,

f(gkg−1) = f(g)f(k)f(g−1) = f(g)e eG(f(g))−1 = e eG.

For another example in the same spirit, consider some subgroups of GL2(F )
where F is any field,

P =
{[

a b
0 d

]}
(the parabolic subgroup),

M =
{[

a 0
0 d

]}
(the maximal Levi component),

N =
{[

1 b
0 1

]}
(the unipotent radical).

The calculation[
a b
0 d

]
=
[

a 0
0 d

] [
1 a−1b
0 1

]
=
[

1 bd−1

0 1

] [
a 0
0 d

]
shows that

P = MN = NM.

Also, the intersection M ∩N is trivial. And, although M and N do not commute,
M normalizes N ,

mnm−1 =
[

a 0
0 d

] [
1 b
0 1

] [
a−1 0
0 d−1

]
=
[

1 abd−1

0 1

]
∈ N.

That is, the normalizer of N in P is all of P . On the other hand, one can check
that N does not normalize M .


