GROUP ACTIONS

1. Review of Homomorphisms

Recall that if $\left(G, \circ_{G}\right)$ and $\left(\widetilde{G}, \circ_{\widetilde{G}}\right)$ are groups then a set-map

$$
f: G \longrightarrow \widetilde{G}
$$

is a homomorphism if the following diagram commutes:

That is, the map f must satisfy the condition

$$
f\left(g \circ_{G} g^{\prime}\right)=f(g) \circ_{\widetilde{G}} f\left(g^{\prime}\right), \quad g, g^{\prime} \in G
$$

An injective homomorphism is a monomorphism. A surjective homomorphism is an epimorphism. A bijective homomorphism is an isomorphism. A homomorphism from a group back to itself is an endomorphism and an isomorphism from a group back to itself is an automorphism.

Immediately in consequence of the definition, any homomorphism satisfies

$$
\begin{aligned}
f\left(e_{G}\right) & =e_{\widetilde{G}}, \\
f\left(g^{-1}\right) & =(f(g))^{-1} \quad \text { for all } g \in G,
\end{aligned}
$$

and
f is a monomorphism if and only if its kernel is trivial.
Also, we showed in class that the inverse map of an isomorphism is again an isomorphism. That is, if a bijective set-map between groups preserves algebra then so does its inverse.

And the subgroup test quickly shows that for any homomorphism,

- $\operatorname{ker}(f)$ is a subgroup of G.
- $\operatorname{im}(f)$ is a subgroup of \widetilde{G}.
- $f^{-1}(\widetilde{H})$ is a subgroup of G for any subgroup \widetilde{H} of \widetilde{G}.

If G is abelian then so is any homomorphic image $f(G)$.

2. Group Actions

Recall also that if G is a group and S is a set then an action of G on S is a map

$$
G \times S \longrightarrow S, \quad(g, s) \longmapsto g s
$$

such that

$$
\begin{aligned}
e s & =s & & \text { for all } s \in S \\
\left(g g^{\prime}\right) s & =g\left(g^{\prime} s\right) & & \text { for all } g, g^{\prime} \in G, s \in S
\end{aligned}
$$

The formula $\left(g g^{\prime}\right) s=g\left(g^{\prime} s\right)$ (called the associativity rule for the action) features one group product and three group actions. The associativity rule shows immediately that

$$
g\left(g^{-1} s\right)=s, \quad g \in G, s \in S
$$

3. Isotropy

For any group action, for any element s of the set acted on, the subset of G that fixes s,

$$
G_{s}=\{g \in G: g s=s\},
$$

is the isotropy subgroup of s. Verifying that G_{s} is indeed a subgroup is straightforward, using the last display of the previous paragraph.

4. Application of Isotropy: Centralizing Subgroups

Especially, any group G acts on its own power set $\mathcal{P}(G)$ in two ways:

- By left-translation, $(g, S) \mapsto g S=\{g s: s \in S\}$.
- By left-conjugation, $(g, S) \mapsto g S g^{-1}=\left\{g s g^{-1}: s \in S\right\}$.

For any cardinal number k, the two actions restrict to actions of G on the set of cardinality- k subsets of G. In particular, when $k=1$ they restrict to actions of G on itself. The conjugation action also restricts to the set of subgroups of G, and to the set of cardinality- k subgroups of G for any k.

The centralizer of any group element \tilde{g} is defined as an isotropy subgroup,

$$
Z(\tilde{g})=\tilde{g} \text {-isotropy under the conjugation action of } G \text { on itself, }
$$

That is, the centralizer of \tilde{g} is the subgroup of group elements that commute with \tilde{g},

$$
Z(\tilde{g})=\{g \in G: g \tilde{g}=\tilde{g} g\}
$$

The centralizer of \tilde{g} is a supergroup of the subgroup of G generated by \tilde{g}.
For any subset S of G, the centralizer of S is the subgroup of group elements that commute with S,

$$
Z(S)=\bigcap_{\tilde{g} \in S} Z(\tilde{g})=\{g \in G: g \tilde{g}=\tilde{g} g \text { for all } \tilde{g} \in S\}
$$

The centralizer of S need not contain S. In particular the center of the group is the subgroup of elements that commute with the entire group,

$$
Z(G)=\{g \in G: g \tilde{g}=\tilde{g} g \text { for all } \tilde{g} \in G\}
$$

A group may have abelian subgroups that are not central, since central connotes commuting with the entire group.

5. Application of Isotropy: Normalizing Subgroups

The normalizer of any subset S of G is its isotropy subgroup under the action of G on its power set,

$$
N(S)=\left\{g \in G: g S g^{-1}=S\right\}
$$

Elements of $N(S)$ need not fix S pointwise under conjugation. Conjugation by elements of $N(S)$ may permute S, but it may not move elements out of S.

Especially, for any homomorphism $f: G \longrightarrow \widetilde{G}$,

$$
N(\operatorname{ker}(f))=G
$$

Indeed, for any $k \in \operatorname{ker}(f)$ and any $g \in G$,

$$
f\left(g k g^{-1}\right)=f(g) f(k) f\left(g^{-1}\right)=f(g) e_{\widetilde{G}}(f(g))^{-1}=e_{\widetilde{G}} .
$$

For another example in the same spirit, consider some subgroups of $\mathrm{GL}_{2}(F)$ where F is any field,

$$
\begin{aligned}
P & =\left\{\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]\right\} \quad \text { (the parabolic subgroup) }, \\
M & =\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]\right\} \quad \text { (the maximal Levi component) } \\
N & =\left\{\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]\right\} \quad \text { (the unipotent radical). }
\end{aligned}
$$

The calculation

$$
\left[\begin{array}{cc}
a & b \\
0 & d
\end{array}\right]=\left[\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right]\left[\begin{array}{cc}
1 & a^{-1} b \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & b d^{-1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right]
$$

shows that

$$
P=M N=N M
$$

Also, the intersection $M \cap N$ is trivial. And, although M and N do not commute, M normalizes N,

$$
m n m^{-1}=\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a^{-1} & 0 \\
0 & d^{-1}
\end{array}\right]=\left[\begin{array}{cc}
1 & a b d^{-1} \\
0 & 1
\end{array}\right] \in N
$$

That is, the normalizer of N in P is all of P. On the other hand, one can check that N does not normalize M.

