MATHEMATICS 332: ALGEBRA - ASSIGNMENT 1

Reading: Gallian, chapter 0; class handout.

Problems:

1. (a) Let r be a positive integer, and let p be prime with $\operatorname{gcd}(r, p-1)=1$. Thus r has an inverse modulo $p-1$. Let s denote the inverse,

$$
s=r^{-1} \bmod p-1
$$

Show that for every a modulo p, the value

$$
a^{s} \bmod p
$$

is an r th root of a modulo p.
(b) Let q be prime, and let p be prime with $q \mid p-1$ but $q^{2} \nmid p-1$. Thus q has an inverse modulo $(p-1) / q$. Let

$$
s=q^{-1} \bmod (p-1) / q
$$

Suppose that a is a q th power modulo p. Show that the value

$$
a^{s} \bmod p
$$

is a q th root of a modulo p.
2. (a) Let p be prime and let $n>1$. Show that the polynomial

$$
f(X)=X^{n}-p X+p
$$

has no rational root.
(b) Let p be prime, and let c be an integer not divisible by p. Show that the polynomial

$$
g(X)=X^{p}-X+c
$$

has no rational root.
3. Use fast modular exponentiation to compute

$$
72^{50} \bmod 101
$$

What does the result say about a square root of -1 modulo $101 ?$
4. Explain why for any positive integer n,

$$
\sum_{d \mid n} \varphi(d)=n
$$

5. (a) Supply the two missing calculations in the handout's proof of the Sun-Ze Theorem.
(b) Use the map g in the handout's proof of the Sun-Ze Theorem to find an equivalence class $c \bmod 77$ such that

$$
c=3 \bmod 7, \quad c=7 \bmod 11
$$

Use the map g in the handout's proof of the Sun-Ze Theorem to find an equivalence class $c \bmod 1001$ such that

$$
c=3 \bmod 7, \quad c=7 \bmod 11, \quad c=4 \bmod 13
$$

