STEREOGRAPHIC PROJECTION IS CONFORMAL

Let

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

be the unit sphere, and let \mathbf{n} denote the north pole $(0,0,1)$. Identify the complex plane \mathbb{C} with the (x, y)-plane in \mathbb{R}^{3}. The stereographic projection map,

$$
\pi: S^{2}-\mathbf{n} \longrightarrow \mathbb{C}
$$

is described as follows: place a light source at the north pole n. For any point $p \in S^{2}-\mathbf{n}$, consider a light ray emanating downward from \mathbf{n} to pass through the sphere at p. The ray also meets the plane, and the point where it hits is $\pi(p)$. That is,

$$
\pi(p)=\ell(\mathbf{n}, p) \cap \mathbb{R}^{2}
$$

where $\ell(\mathbf{n}, p)=\{(1-t) \mathbf{n}+t p: t \in \mathbb{R}\}$ is the line through \mathbf{n} and p. (See figure 1.)

Figure 1. Stereographic projection

The formula for stereographic projection is

$$
\pi(x, y, z)=\frac{x+i y}{1-z}
$$

Indeed, the point $(1-t) \mathbf{n}+t(x, y, z)$ has last coordinate $1-t+t z$. This equals 0 for $t=1 /(1-z)$, making the other coordinates $x /(1-z)$ and $y /(1-z)$, and the formula follows.

For the inverse map, take a point $q=(x, y, 0)$ in the plane. Since \mathbf{n} and q are orthogonal, any point $p=(1-t) \mathbf{n}+t q$ on the line $\ell(\mathbf{n}, q)$ satisfies $|p|^{2}=$ $(1-t)^{2}+t^{2}|q|^{2}$. This equals 1 for $t=2 /\left(|q|^{2}+1\right)$ (ignoring $t=0$, which gives the north pole), showing that

$$
\pi^{-1}(x, y)=\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) .
$$

Stereographic projection is conformal, meaning that it preserves angles between curves. To see this, take a point $p \in S^{2} \backslash\{\mathbf{n}\}$, let T_{p} denote the tangent plane to S^{2} at p, and let $T_{\mathbf{n}}$ denote the tangent plane to S^{2} at \mathbf{n}. Working first in the 0n p-plane (see figure 2), we have equal angles α and right angles between the radii and the tangent planes, hence equal angles β, hence equal angles β^{\prime}, and hence equal lengths b.

Figure 2. Side view of stereographic projection
Now let γ be a smooth curve on S^{2} through p, let t be its tangent at p, and let \hat{t} be the intersection of the plane containing \mathbf{n} and t with \mathbb{R}^{2}. (See figure 3.) In fact \hat{t} is the tangent to $\pi \circ \gamma$ at $\pi(p)$. To see this, note that π is the restriction of a rational, hence differentiable, map (also called π) from an \mathbb{R}^{3}-neighborhood of p to \mathbb{R}^{2} that takes t to \hat{t} near p. (A neighborhood of a point is an open set containing the point.) Since γ and t are curves in \mathbb{R}^{3} with the same tangent t at p, it follows that $\pi \circ \gamma$ and $\pi \circ t=\hat{t}$ are curves in \mathbb{R}^{2} with the same tangent at $\pi(p)$. Since \hat{t} is its own tangent at $\pi(p)$, it is also the tangent to $\pi \circ \gamma$ there. The lengths b are equal, hence so are the angles θ, by right triangles. Repeating this analysis for a second curve $\tilde{\gamma}$ through p completes the proof.

For a continuation of this argument, showing that stereographic projection takes circles to circles, see Geometry and the Imagination by Hilbert and Cohn-Vossen.

Followup Exercises

- Illustrate the proof that stereographic projection is conformal when p lies in the lower hemisphere.
- The proof that stereographic projection is conformal tacitly assumed that t and \hat{t} meet. Must they? What happens to the proof if they don't?
- Show that stereographic projection takes circles to circles.

Figure 3. Stereographic projection is conformal

