ROTATIONS OF THE RIEMANN SPHERE

A rotation of the sphere S^{2} is a map $r=r_{p, \alpha}$ described by spinning the sphere (actually, spinning the ambient space \mathbb{R}^{3}) about the line through the origin and the point $p \in S^{2}$, counterclockwise through angle α looking at p from outside the sphere. (See figure 1.)

Figure 1. The rotation $r_{p, \alpha}$
Thus r is the linear map that fixes p and rotates planes orthogonal to p through angle α. Let q be a unit vector orthogonal to p. Then, viewing p and q as column vectors, the matrix of r is

$$
m_{r}=\left[\begin{array}{lll}
p & q & p \times q
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{ccc}
p & q & p \times q]^{-1} .
\end{array}\right.
$$

The set of such rotations,

$$
\operatorname{Rot}\left(S^{2}\right)
$$

forms a group, most naturally viewed as a subgroup of $\mathrm{GL}_{3}(\mathbb{R})$. Showing this requires some linear algebra.

Recall that if $m \in \mathrm{M}_{3}(\mathbb{R})$, meaning that m is a 3-by-3 real matrix, then its transpose m^{\top} is obtained by flipping about the diagonal. That is,

$$
m_{i j}^{\top}=m_{j i} \quad \text { for } i, j=1,2,3
$$

The transpose is characterized by the more convenient condition

$$
\langle m x, y\rangle=\left\langle x, m^{\top} y\right\rangle \quad \text { for all } x, y \in \mathbb{R}^{3},
$$

where \langle,$\rangle is the usual inner product,$

$$
\langle x, y\rangle=\sum x_{i} y_{i} .
$$

The matrix m is orthogonal if

$$
m^{\top} m=I
$$

or, equivalently, if m preserves inner products,

$$
\langle m x, m y\rangle=\langle x, y\rangle \quad \text { for all } x, y \in \mathbb{R}^{3} .
$$

The orthogonal matrices form a group $\mathrm{O}_{3}(\mathbb{R}) \subset \mathrm{GL}_{3}(\mathbb{R})$, and the special orthogonal matrices,

$$
\mathrm{SO}_{3}(\mathbb{R})=\left\{m \in \mathrm{O}_{3}(\mathbb{R}): \operatorname{det} m=1\right\}
$$

form a subgroup of index 2 . With these facts in place it is not hard to prove that $\operatorname{Rot}\left(S^{2}\right)$ forms a group, and that

Theorem 0.1. As a subgroup of $\mathrm{GL}_{3}(\mathbb{R}), \operatorname{Rot}\left(S^{2}\right)=\mathrm{SO}_{3}(\mathbb{R})$.
Here is a sketch of the proof. Given a rotation $r=r_{p, \alpha}$, its matrix,

$$
m_{r}=\left[\begin{array}{lll}
p & q & p \times q
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{ccc}
p & q & p \times q
\end{array}\right]^{-1}
$$

is readily verified to be special orthogonal. On the other hand, take any special orthogonal matrix m. Because 3 is odd, m has a real eigenvalue λ. Any real eigenvalue λ with eigenvector p satisfies

$$
\lambda^{2}\langle p, p\rangle=\langle\lambda p, \lambda p\rangle=\langle m p, m p\rangle=\langle p, p\rangle
$$

i.e., $\lambda= \pm 1$. Because $\operatorname{det} m=1$, and the determinant is the product of the eigenvalues, and any imaginary eigenvalues occur in conjugate pairs, m in fact has 1 for an eigenvalue with unit eigenvector p. Take any nonzero vector q perpendicular to p. Some rotation $r=r_{p, \alpha}$ takes q to $m q$ and has matrix $m_{r} \in \mathrm{SO}_{3}(\mathbb{R})$. Thus the matrix $m_{r}^{-1} m$ lies in $\mathrm{SO}_{3}(\mathbb{R})$ and fixes both p and q. It is therefore the identity, showing that $m=m_{r}$ is a rotation matrix.

A rotation of the Riemann sphere $\widehat{\mathbb{C}}$ is a map $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ corresponding under stereographic projection to a true rotation r of the round sphere S^{2}. In other words, the following diagram commutes:

Let

$$
\operatorname{Rot}(\widehat{\mathbb{C}})
$$

denote the set of such rotations. Because $\operatorname{Rot}\left(S^{2}\right)$ forms a group, $\operatorname{Rot}(\widehat{\mathbb{C}})$ forms an isomorphic group under $r \mapsto \pi \circ r \circ \pi^{-1}$. Because any rotation r is conformal on S^{2}, the corresponding bijection f is conformal on $\widehat{\mathbb{C}}$ and is therefore an automorphism, and so $\operatorname{Rot}(\widehat{\mathbb{C}})$ is a subgroup of $\operatorname{Aut}(\widehat{\mathbb{C}})$. With some more linear algebra we can describe $\operatorname{Rot}(\widehat{\mathbb{C}})$ explicitly as a subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$.

If $m \in \mathrm{M}_{2}(\mathbb{C})$ is a 2 -by- 2 complex matrix then its adjoint is

$$
m^{*}=\bar{m}^{\top}
$$

where the overbar denotes complex conjugation, i.e.,

$$
m_{i j}^{*}=\overline{m_{j i}} \quad \text { for } i, j=1,2 .
$$

The adjoint is characterized by the condition

$$
\langle m x, y\rangle=\left\langle x, m^{*} y\right\rangle \quad \text { for all } x, y \in \mathbb{C}^{2}
$$

where now \langle,$\rangle is the complex inner product$

$$
\langle x, y\rangle=\sum \overline{x_{i}} y_{i} .
$$

The role of the adjoint in the algebra of complex matrices is analogous to the role of the conjugate in the algebra of complex numbers. The matrix u is unitary if

$$
u^{*} u=I .
$$

(This condition generalizes the unit complex numbers.) Equivalently,

$$
\langle u x, u y\rangle=\langle x, y\rangle \quad \text { for all } x, y \in \mathbb{C}^{2}
$$

The unitary matrices form a group $\mathrm{U}_{2}(\mathbb{C})$. The special unitary matrices

$$
\mathrm{SU}_{2}(\mathbb{C})=\left\{u \in \mathrm{U}_{2}(\mathbb{C}): \operatorname{det} u=1\right\}
$$

form a subgroup. A matrix is special unitary if and only if it takes the form

$$
u=\left[\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right], \quad|a|^{2}+|b|^{2}=1
$$

The projective unitary group is

$$
\mathrm{PU}_{2}(\mathbb{C})=\mathrm{U}_{2}(\mathbb{C}) /\left(\mathrm{U}_{2}(\mathbb{C}) \cap \mathbb{C}^{*} I\right)
$$

and the projective special unitary group is

$$
\operatorname{PSU}_{2}(\mathbb{C})=\mathrm{SU}_{2}(\mathbb{C}) /\left(\mathrm{SU}_{2}(\mathbb{C}) \cap \mathbb{C}^{*} I\right)=\mathrm{SU}_{2}(\mathbb{C}) /\{ \pm I\}
$$

There is an isomorphism $\mathrm{PU}_{2}(\mathbb{C}) \cong \operatorname{PSU}_{2}(\mathbb{C})$, and the group $\mathrm{PSU}_{2}(\mathbb{C})$ can be more convenient to work with since its elements are two-element cosets $\{ \pm u\}$.
Theorem 0.2. As a subgroup of $\mathrm{PSL}_{2}(\mathbb{C}), \operatorname{Rot}(\widehat{\mathbb{C}})=\operatorname{PSU}_{2}(\mathbb{C})$.
Here is an elegant proof, which incidentally shows that $\operatorname{Rot}(\widehat{\mathbb{C}})$ is a group without reference to $\mathrm{SO}_{3}(\mathbb{R})$. We show first that any rotation lies in $\mathrm{PSU}_{2}(\mathbb{C})$, second that any element of $\mathrm{PSU}_{2}(\mathbb{C})$ is a rotation.

A short calculation shows that if the antipodal pair $p,-p \in S^{2} \backslash\{\mathbf{n}, \mathbf{s}\}$ have stereographic images $z, z^{*} \in \mathbb{C}$, then $z^{*}=-1 / \bar{z}$, where the overbar is complex conjugation. Now let f be a rotation of $\widehat{\mathbb{C}}$ induced by a rotation r of S^{2}. Let a matrix describing f be

$$
m_{f}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \operatorname{det}\left(m_{f}\right)=1
$$

Because r takes antipodal pairs to antipodal pairs, f must satisfy the corresponding relation

$$
f\left(z^{*}\right)=f(z)^{*} \quad \text { for all } z \in \mathbb{C} \backslash\{0\}
$$

This condition is that for some $\lambda \in \mathbb{C}^{*}$,

$$
d=\lambda \bar{a}, \quad a=\lambda \bar{d}, \quad c=-\lambda \bar{b}, \quad b=-\lambda \bar{c} .
$$

These relations and the relation $a d-b c=1$ combine to show that $\lambda=1$ and therefore $m_{f} \in \mathrm{PSU}_{2}(\mathbb{C})$.

For the converse, let f have matrix

$$
m_{f}=\left[\begin{array}{rr}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right] \in \operatorname{PSU}_{2}(\mathbb{C})
$$

If $f(0)=0$ then $f(z)=e^{i \alpha} z$ for some α, so f is a rotation. If $f(0)=z \neq 0$ then some rotation $f_{z} \in \operatorname{Rot}(\widehat{\mathbb{C}}) \subset \operatorname{PSU}_{2}(\mathbb{C})$ also takes 0 to z, and so the composition
$g=f_{z}^{-1} \circ f \in \mathrm{PSU}_{2}(\mathbb{C})$ fixes 0 and is thus a rotation. Therefore $f=f_{z} \circ g$ is also a rotation, and the proof is complete.

The two theorems combine to show that

$$
\operatorname{PSU}_{2}(\mathbb{C}) \cong \mathrm{SO}_{3}(\mathbb{R})
$$

The next result says how to compute in $\operatorname{PSU}_{2}(\mathbb{C})$ while thinking of $\operatorname{Rot}\left(S^{2}\right)$. For any rotation $r_{p, \alpha}$ of S^{2}, let $f_{\pi(p), \alpha}$ denote the corresponding rotation of $\widehat{\mathbb{C}}$.
Theorem 0.3. Let $p=\left(p_{1}, p_{2}, p_{3}\right) \in S^{2}$ and let $\alpha \in \mathbb{R}$. Then

$$
f_{\pi(p), \alpha}=\left[\begin{array}{rr}
\cos \frac{\alpha}{2}+i p_{3} \sin \frac{\alpha}{2} & -p_{2} \sin \frac{\alpha}{2}+i p_{1} \sin \frac{\alpha}{2} \\
p_{2} \sin \frac{\alpha}{2}+i p_{1} \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2}-i p_{3} \sin \frac{\alpha}{2}
\end{array}\right] .
$$

Here is the proof. Either by geometry or by a calculation using the commutative diagram from earlier, the rotation $r_{\mathbf{n}, \alpha}$ of S^{2} induces the automorphism $f_{\infty, \alpha}(z)=$ $e^{i \alpha} z$ of $\widehat{\mathbb{C}}$, i.e., under a slight abuse of notation,

$$
f_{\infty, \alpha}=\left[\begin{array}{cc}
e^{i \alpha / 2} & 0 \\
0 & e^{-i \alpha / 2}
\end{array}\right]
$$

Next consider the rotation $r_{(0,1,0), \phi}$ of S^{2} counterclockwise about the positive x_{2}-axis through angle ϕ. We will find the corresponding rotation $f_{i, \phi}$ of $\widehat{\mathbb{C}}$. A rotation r of S^{2} takes $(0,1,0)$ to \mathbf{n} and $(0,-1,0)$ to \mathbf{s}; the corresponding rotation f of $\widehat{\mathbb{C}}$ takes i to ∞ and $-i$ to 0 , so it takes the form

$$
f(z)=k \frac{z+i}{z-i}
$$

for some nonzero constant k. Because $r_{(0,1,0), \phi}=r^{-1} \circ r_{\mathbf{n}, \phi} \circ r$, the corresponding result in $\operatorname{Rot}(\widehat{\mathbb{C}})$ is

$$
f_{i, \phi}=f^{-1} \circ f_{\infty, \phi} \circ f
$$

or

$$
f \circ f_{i, \phi}=f_{\infty, \phi} \circ f
$$

Thus for all $z \in \widehat{\mathbb{C}}$,

$$
k \cdot \frac{f_{i, \phi}(z)+i}{f_{i, \phi}(z)-i}=e^{i \phi} k \cdot \frac{z+i}{z-i} .
$$

The k cancels, leaving

$$
e^{-i \phi / 2}\left(f_{i, \phi}(z)+i\right)(z-i)=e^{i \phi / 2}\left(f_{i, \phi}(z)-i\right)(z+i)
$$

and some algebra gives

$$
f_{i, \phi}=\left[\begin{array}{rr}
\cos \frac{\phi}{2} & -\sin \frac{\phi}{2} \\
\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right] .
$$

Now let the point $p \in S^{2}$ have spherical coordinates $(1, \theta, \phi)$, meaning that

$$
\cos \theta=p_{1} / \sqrt{p_{1}^{2}+p_{2}^{2}}, \quad \sin \theta=p_{2} / \sqrt{p_{1}^{2}+p_{2}^{2}}, \quad \cos \phi=p_{3}, \quad \sin \phi=\sqrt{p_{1}^{2}+p_{2}^{2}}
$$

(See figure 2.) To carry out $r_{p, \alpha}$, move p to the north pole via rotations about the north pole and $(0,1,0)$, rotate about the north pole by α, and restore p; to wit,

$$
r_{p, \alpha}=r_{\mathbf{n}, \theta} \circ r_{(0,1,0), \phi} \circ r_{\mathbf{n}, \alpha} \circ r_{(0,1,0),-\phi} \circ r_{\mathbf{n},-\theta}
$$

The corresponding rotation of $\widehat{\mathbb{C}}$ is

$$
\begin{gathered}
f_{\pi(p), \alpha}=\left[\begin{array}{cc}
e^{i \theta / 2} & 0 \\
0 & e^{-i \theta / 2}
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{\phi}{2} & -\sin \frac{\phi}{2} \\
\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right]\left[\begin{array}{cc}
e^{i \alpha / 2} & 0 \\
0 & e^{-i \alpha / 2}
\end{array}\right] \\
\cdot\left[\begin{array}{rr}
\cos \frac{\phi}{2} & \sin \frac{\phi}{2} \\
-\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right]\left[\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta / 2}
\end{array}\right] .
\end{gathered}
$$

Multiplying this out and using a little trigonometry gives the result.

Figure 2. Spherical coordinates

