
ROTATIONS OF THE RIEMANN SPHERE

A rotation of the sphere S2 is a map r = rp,α described by spinning the sphere
(actually, spinning the ambient space R

3) about the line through the origin and
the point p ∈ S2, counterclockwise through angle α looking at p from outside the
sphere. (See figure 1.)
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α

Figure 1. The rotation rp,α

Thus r is the linear map that fixes p and rotates planes orthogonal to p through
angle α. Let q be a unit vector orthogonal to p. Then, viewing p and q as column
vectors, the matrix of r is

mr =
[
p q p× q

]


1 0 0
0 cosα − sinα
0 sinα cosα


 [

p q p× q
]
−1

.

The set of such rotations,

Rot(S2),

forms a group, most naturally viewed as a subgroup of GL3(R). Showing this
requires some linear algebra.

Recall that if m ∈ M3(R), meaning that m is a 3-by-3 real matrix, then its
transpose mT is obtained by flipping about the diagonal. That is,

mT

ij = mji for i, j = 1, 2, 3.

The transpose is characterized by the more convenient condition

〈mx, y〉 = 〈x,mTy〉 for all x, y ∈ R
3,

where 〈 , 〉 is the usual inner product,

〈x, y〉 =
∑

xiyi.

The matrix m is orthogonal if

mTm = I,

or, equivalently, if m preserves inner products,

〈mx,my〉 = 〈x, y〉 for all x, y ∈ R
3.
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The orthogonal matrices form a group O3(R) ⊂ GL3(R), and the special orthogonal
matrices,

SO3(R) = {m ∈ O3(R) : detm = 1},

form a subgroup of index 2. With these facts in place it is not hard to prove that
Rot(S2) forms a group, and that

Theorem 0.1. As a subgroup of GL3(R), Rot(S
2) = SO3(R).

Here is a sketch of the proof. Given a rotation r = rp,α, its matrix,

mr =
[
p q p× q

]


1 0 0
0 cosα − sinα
0 sinα cosα


 [

p q p× q
]
−1

,

is readily verified to be special orthogonal. On the other hand, take any special
orthogonal matrix m. Because 3 is odd, m has a real eigenvalue λ. Any real
eigenvalue λ with eigenvector p satisfies

λ2〈p, p〉 = 〈λp, λp〉 = 〈mp,mp〉 = 〈p, p〉,

i.e., λ = ±1. Because detm = 1, and the determinant is the product of the
eigenvalues, and any imaginary eigenvalues occur in conjugate pairs, m in fact has
1 for an eigenvalue with unit eigenvector p. Take any nonzero vector q perpendicular
to p. Some rotation r = rp,α takes q to mq and has matrix mr ∈ SO3(R). Thus the
matrix m−1

r m lies in SO3(R) and fixes both p and q. It is therefore the identity,
showing that m = mr is a rotation matrix.

A rotation of the Riemann sphere Ĉ is a map f : Ĉ −→ Ĉ corresponding under
stereographic projection to a true rotation r of the round sphere S2. In other words,
the following diagram commutes:

S2 r
//

π
��

S2

π
��

Ĉ
f

// Ĉ.

Let

Rot(Ĉ)

denote the set of such rotations. Because Rot(S2) forms a group, Rot(Ĉ) forms an
isomorphic group under r 7→ π ◦r◦π−1. Because any rotation r is conformal on S2,

the corresponding bijection f is conformal on Ĉ and is therefore an automorphism,

and so Rot(Ĉ) is a subgroup of Aut(Ĉ). With some more linear algebra we can

describe Rot(Ĉ) explicitly as a subgroup of PSL2(C).
If m ∈ M2(C) is a 2-by-2 complex matrix then its adjoint is

m∗ = mT,

where the overbar denotes complex conjugation, i.e.,

m∗

ij = mji for i, j = 1, 2.

The adjoint is characterized by the condition

〈mx, y〉 = 〈x,m∗y〉 for all x, y ∈ C
2,
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where now 〈 , 〉 is the complex inner product

〈x, y〉 =
∑

xiyi.

The role of the adjoint in the algebra of complex matrices is analogous to the role
of the conjugate in the algebra of complex numbers. The matrix u is unitary if

u∗u = I.

(This condition generalizes the unit complex numbers.) Equivalently,

〈ux, uy〉 = 〈x, y〉 for all x, y ∈ C
2.

The unitary matrices form a group U2(C). The special unitary matrices

SU2(C) = {u ∈ U2(C) : detu = 1}

form a subgroup. A matrix is special unitary if and only if it takes the form

u =

[
a b

−b a

]
, |a|2 + |b|2 = 1.

The projective unitary group is

PU2(C) = U2(C)/(U2(C) ∩ C
∗I),

and the projective special unitary group is

PSU2(C) = SU2(C)/(SU2(C) ∩ C
∗I) = SU2(C)/{±I}.

There is an isomorphism PU2(C) ∼= PSU2(C), and the group PSU2(C) can be more
convenient to work with since its elements are two-element cosets {±u}.

Theorem 0.2. As a subgroup of PSL2(C), Rot(Ĉ) = PSU2(C).

Here is an elegant proof, which incidentally shows that Rot(Ĉ) is a group without
reference to SO3(R). We show first that any rotation lies in PSU2(C), second that
any element of PSU2(C) is a rotation.

A short calculation shows that if the antipodal pair p,−p ∈ S2 \ {n, s} have
stereographic images z, z∗ ∈ C, then z∗ = −1/z, where the overbar is complex

conjugation. Now let f be a rotation of Ĉ induced by a rotation r of S2. Let a
matrix describing f be

mf =

[
a b
c d

]
, det(mf ) = 1.

Because r takes antipodal pairs to antipodal pairs, f must satisfy the corresponding
relation

f(z∗) = f(z)∗ for all z ∈ C \ {0}.

This condition is that for some λ ∈ C
∗,

d = λa, a = λd, c = −λb, b = −λc.

These relations and the relation ad − bc = 1 combine to show that λ = 1 and
therefore mf ∈ PSU2(C).

For the converse, let f have matrix

mf =

[
a b

−b a

]
∈ PSU2(C).

If f(0) = 0 then f(z) = eiαz for some α, so f is a rotation. If f(0) = z 6= 0 then

some rotation fz ∈ Rot(Ĉ) ⊂ PSU2(C) also takes 0 to z, and so the composition
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g = f−1
z ◦ f ∈ PSU2(C) fixes 0 and is thus a rotation. Therefore f = fz ◦ g is also

a rotation, and the proof is complete.

The two theorems combine to show that

PSU2(C) ∼= SO3(R).

The next result says how to compute in PSU2(C) while thinking of Rot(S2). For

any rotation rp,α of S2, let fπ(p),α denote the corresponding rotation of Ĉ.

Theorem 0.3. Let p = (p1, p2, p3) ∈ S2 and let α ∈ R. Then

fπ(p),α =

[
cos α

2 + ip3 sin
α
2 −p2 sin

α
2 + ip1 sin

α
2

p2 sin
α
2 + ip1 sin

α
2 cos α

2 − ip3 sin
α
2

]
.

Here is the proof. Either by geometry or by a calculation using the commutative
diagram from earlier, the rotation rn,α of S2 induces the automorphism f∞,α(z) =

eiαz of Ĉ, i.e., under a slight abuse of notation,

f∞,α =

[
eiα/2 0
0 e−iα/2

]
.

Next consider the rotation r(0,1,0),φ of S2 counterclockwise about the positive

x2-axis through angle φ. We will find the corresponding rotation fi,φ of Ĉ. A
rotation r of S2 takes (0, 1, 0) to n and (0,−1, 0) to s; the corresponding rotation f

of Ĉ takes i to ∞ and −i to 0, so it takes the form

f(z) = k
z + i

z − i

for some nonzero constant k. Because r(0,1,0),φ = r−1 ◦ rn,φ ◦ r, the corresponding

result in Rot(Ĉ) is

fi,φ = f−1 ◦ f∞,φ ◦ f,

or

f ◦ fi,φ = f∞,φ ◦ f.

Thus for all z ∈ Ĉ,

k ·
fi,φ(z) + i

fi,φ(z)− i
= eiφk ·

z + i

z − i
.

The k cancels, leaving

e−iφ/2(fi,φ(z) + i)(z − i) = eiφ/2(fi,φ(z)− i)(z + i),

and some algebra gives

fi,φ =

[
cos φ

2 − sin φ
2

sin φ
2 cos φ

2

]
.

Now let the point p ∈ S2 have spherical coordinates (1, θ, φ), meaning that

cos θ = p1/
√

p21 + p22, sin θ = p2/
√

p21 + p22, cosφ = p3, sinφ =
√

p21 + p22.

(See figure 2.) To carry out rp,α, move p to the north pole via rotations about the
north pole and (0, 1, 0), rotate about the north pole by α, and restore p; to wit,

rp,α = rn,θ ◦ r(0,1,0),φ ◦ rn,α ◦ r(0,1,0),−φ ◦ rn,−θ.
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The corresponding rotation of Ĉ is

fπ(p),α =

[
eiθ/2 0
0 e−iθ/2

] [
cos φ

2 − sin φ
2

sin φ
2 cos φ

2

] [
eiα/2 0
0 e−iα/2

]

·

[
cos φ

2 sin φ
2

− sin φ
2 cos φ

2

] [
e−iθ/2 0

0 eiθ/2

]
.

Multiplying this out and using a little trigonometry gives the result.

p

θ

φ

Figure 2. Spherical coordinates


