
THE RIEMANN MAPPING THEOREM

Theorem 0.1 (Riemann Mapping Theorem). Let Ω be a a simply connected region
in C that is not all of C. Let D be the unit disk. Then there exists an analytic
bijection

f : Ω
∼−→ D.

For each point z0 ∈ Ω, there is a unique such map f such that

f(z0) = 0, f ′(z0) ∈ R+.

The proof of uniqueness, granting existence, is easy. Suppose that two maps

f1, f2 : Ω
∼−→ D

satisfy the normalizing conditions, f1(z0) = f2(z0) = 0 and f ′1(z0), f ′2(z0) ∈ R+.
Consider the map

f2 ◦ f−11 : D
∼−→ D.

This automorphism of D fixes 0, and so it is a rotation. That is,

f2(z) = eiθf1(z) for some θ,

and so

f ′2(z0) = eiθf ′1(z0).

But these are both real and positive, forcing eiθ = 1, i.e., f2 = f1.

The proof of existence breaks nicely into parts that use different ideas. Consider
a family of functions,

F = {analytic, injective f : Ω −→ D such that f(z0) = 0}.

The argument will show that

(A) F is nonempty.
(B) If some f ∈ F satisfies

|f ′(z0)| ≥ |g′(z0)| for all g ∈ F

then f is surjective.
(C) F is equicontinuous. So the Arzela–Ascoli Theorem and some other general

results complete the argument.

(A) To show that F is nonempty amounts to finding a suitable map from Ω to D.
Some complex number a does not belong to Ω since Ω is not all of C, and after

a translation we may assume that a = 0. There is a path γ from 0 to ∞ in the
complement of Ω since Ω is simply connected. So we can define an analytic square
root

r : Ω −→ C, r(z) =
√
z.

Note that r can not assume both some value w and its opposite −w, because

r(z) = w =⇒ z = w2 and r(z′) = −w =⇒ z′ = (−w)2 = w2.
1



2 THE RIEMANN MAPPING THEOREM

That is, the only candidate input z′ to be taken by r to −w is the input z taken
to w instead. Now let w0 be any value taken by r. By the Open Mapping Theorem,
r(Ω) contains some disk N(w0, ε) about w0, and therefore r(Ω) is disjoint from the
opposite disk,

r(Ω) ∩N(−w0, ε) = ∅.

Follow r by a translation and a scale to get a map g : Ω −→ C such that

g(Ω) ∩D = ∅.

Consequently,

(1/g)(Ω) ⊂ D.

Let p = (1/g)(z0), and let f = Tp ◦ (1/g), where Tp is the usual automorphism of D
that takes p to 0,

Tpz =
z − p
1− pz

.

Then f is an element of F .

(B) We need to show that if some f ∈ F has maximal absolute derivative at z0
then f surjects. We will show the contrapositive, that if f does not surject then
some g ∈ F has larger absolute derivative at z0.

So, suppose that f does not surject. Then f misses some point w ∈ D. Define

g = Tw′ ◦ sqrt ◦ Tw ◦ f,

where we are taking some well defined branch of square root on the simply connected
set (Tw ◦ f)(Ω), and w′ =

√
−w. It follows that

f = T−1w ◦ sq ◦ T−1w′ ◦ g.

The self-map of the disk

s = T−1w ◦ sq ◦ T−1w′ : D −→ D

fixes 0, and because of the square, it is not an automorphism. Therefore,

|s′(0)| < 1,

and so since f = s ◦ g and g(z0) = 0 the chain rule gives

|f ′(z0)| = |s′(0)| |g′(z0)| < |g′(z0)|.

This completes the argument.
(C) Next we show that F is equicontinuous. So let ε > 0 be given. We may

assume that ε < 1.
Consider any point z of Ω. Since Ω is open, some closed disk N(z, 2ρ) lies in Ω.

Let γ denote the circle of radius 2ρ about z,

γ = {ζ : |ζ − z| = 2ρ}.
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Then for any z̃ such that |z̃ − z| < ρε, and for any f ∈ F ,

|f(z̃)− f(z)| =
∣∣∣∣ 1

2πi

∫
γ

f(ζ) dζ

ζ − z̃
− 1

2πi

∫
γ

f(ζ) dζ

ζ − z

∣∣∣∣
=

1

2π

∣∣∣∣∫
γ

(
1

ζ − z̃
− 1

ζ − z

)
f(ζ) dζ

∣∣∣∣
=

1

2π

∣∣∣∣∫
γ

(z̃ − z)f(ζ) dζ

(ζ − z̃)(ζ − z)

∣∣∣∣
<

1

2π

ρε

ρ · 2ρ

∫
γ

|dζ|

=
1

2π

ρε

ρ · 2ρ
2π · 2ρ

= ε.

This shows that the definition of equicontinuity is satisfied at z by δ = ρε.

Recall a theorem due to Weierstrass that we used earlier to show that power
series are analytic:

Theorem 0.2 (Weierstrass). Let Ω be a region in C. Consider a sequence of
analytic functions on Ω,

{f0, f1, f2, . . . } : Ω −→ C.
Suppose that the sequence converges on Ω to a limit function

f : Ω −→ C
and that the convergence is uniform on compact subsets of Ω. Then

(1) The limit function f is analytic.
(2) The sequence {f ′n} of derivatives converges on Ω to the derivative f ′ of the

limit function.
(3) This convergence is also uniform on compact subsets of Ω.

Recall also the Hurwitz Theorem:

Theorem 0.3 (Hurwitz). If the fn are injective, and f is not constant, then f is
injective.

To complete the proof of the Riemann Mapping Theorem, let {fn} be a sequence
from F such that

lim
n
{|f ′n(z0)|} = sup

f∈F
{|f ′(z0)|}.

(The supremum is readily seen to be finite by Cauchy’s estimate, but we don’t
even need this.) By the Arzela–Ascoli Theorem, a subsequence converges to some
function f : Ω −→ D, and the convergence is uniform on compact subsets. The
Weierstrass Theorem says that f is analytic and |f ′(z0)| is maximal. The Hurwitz
Theorem says that f is injective. Part B says that f is surjective. This completes
the proof.


