THE RATIO TEST

Consider a complex power series all of whose coefficients are nonzero,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n}, \quad a_{n} \neq 0 \text { for each } n
$$

Suppose that the limit

$$
R=R(f)=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}
$$

exists in the extended nonnegative real number system $[0, \infty]$. We show that R is the radius of convergence of f,
$f(z)$ converges absolutely on the open disk of radius R about c,
and this convergence is uniform on compacta, but $f(z)$ diverges if
$|z-c|>R$.

Not every power series has coefficients that are all nonzero, and even if all the coefficients are nonzero then the limit R needn't exist, so the statement here is only a partial result. For the full story, see this course's related writeup on the radius of convergence formula, involving an idea called the limit superior.

We freely take $c=0$, and we proceed by cases.

1. The Case $0 \leq R<\infty$

If $0<R<\infty$, let z vary through a compact subset K of the open disk of radius R about 0 ; this open disk is empty for $R=0$. Thus, for some $\varepsilon>0$,

$$
|z| \leq R-2 \varepsilon, \quad z \in K
$$

Because $\lim _{n}\left|a_{n}\right| /\left|a_{n+1}\right|=R$, there is a starting index N such that

$$
\begin{aligned}
& R-\varepsilon<\left|a_{N}\right| /\left|a_{N+1}\right| \\
& R-\varepsilon<\left|a_{N+1}\right| /\left|a_{N+2}\right| \\
& R-\varepsilon<\left|a_{N+2}\right| /\left|a_{N+3}\right|
\end{aligned}
$$

and so on. It follows that

$$
\begin{aligned}
& \left|a_{N+1}\right|<\left|a_{N}\right| /(R-\varepsilon) \\
& \left|a_{N+2}\right|<\left|a_{N+1}\right| /(R-\varepsilon)<\left|a_{N}\right| /(R-\varepsilon)^{2} \\
& \left|a_{N+3}\right|<\left|a_{N+2}\right| /(R-\varepsilon)<\left|a_{N}\right| /(R-\varepsilon)^{3}
\end{aligned}
$$

and in general

$$
\left|a_{N+m}\right|<\left|a_{N}\right| /(R-\varepsilon)^{m}, \quad m=1,2,3, \ldots
$$

from which

$$
\left|a_{N+m} z^{N+m}\right|<\left|a_{N}\right|(R-2 \varepsilon)^{N} \frac{(R-2 \epsilon)^{m}}{(R-\varepsilon)^{m}}, \quad m=1,2,3, \ldots
$$

Introduce the quantities $C=\left|a_{N}\right|(R-2 \varepsilon)^{N}$ and $\rho=\frac{R-2 \varepsilon}{R-\varepsilon}<1$, and now the previous display is

$$
\left|a_{N+m} z^{N+m}\right|<C \rho^{m}, \quad m=1,2,3, \ldots .
$$

The head of the sum of the absolute values of the terms of the power series satisfies the estimate

$$
\sum_{n=0}^{N-1}\left|a_{n} z^{n}\right| \leq \sum_{n=0}^{N-1}\left|a_{n}\right|(R-2 \epsilon)^{n}
$$

and the tail satisfies

$$
\sum_{n=N}^{\infty}\left|a_{n} z^{n}\right|<C \sum_{m=0}^{\infty} \rho^{m}=\frac{C}{1-\rho}
$$

So $\sum_{n \geq 0}\left|a_{n} z^{n}\right|$ converges altogether. The convergence uniform over K because for $M \geq N$,

$$
\sum_{n=M}^{\infty}\left|a_{n} z^{n}\right|<C \rho^{M-N} \sum_{m=0}^{\infty} \rho^{m}=\frac{C}{1-\rho} \rho^{M-N}
$$

and as M goes to ∞, this goes to 0 independently of where z lies in K.
Now with $0 \leq R<\infty$, suppose that $|z|>R$. Because $\lim _{n}\left|a_{n}\right| /\left|a_{n+1}\right|=R$, there is a starting index N such that

$$
\left|a_{N+m}\right| /\left|a_{N+m+1}\right|<|z|, \quad m=0,1,2, \ldots
$$

and so, similarly to above,

$$
\left|a_{N+m}\right|>\left|a_{N}\right| /|z|^{m}, \quad m=1,2,3, \ldots
$$

from which, with $C=\left|a_{N}\right||z|^{N}>0$,

$$
\left|a_{N+m} z^{N+m}\right|>C, \quad m=1,2,3, \ldots
$$

Thus $\sum_{n=0}^{\infty} a_{n} z^{n}$ diverges because its terms don't go to 0 .
2. The Case $R=\infty$

Let z vary through any compact subset K of \mathbb{C}. Thus for some $B \geq 0$,

$$
|z| \leq B, \quad z \in K
$$

Because $\lim _{n}\left|a_{n}\right| /\left|a_{n+1}\right|=\infty$, there is a starting index N such that

$$
B+1<\left|a_{N+m}\right| /\left|a_{N+m+1}\right|, \quad m=0,1,2, \ldots .
$$

As above, but now with $C=\left|a_{N}\right| B^{N}$ and $\rho=\frac{B}{B+1}$,

$$
\left|a_{N+m} z^{N+m}\right|<C \rho^{m}, \quad m=1,2,3, \ldots
$$

From here the convergence argument is exactly as before. No divergence argument is needed here because the convergence holds everywhere.

