TERMWISE DERIVATIVES OF POWER SERIES, SANS INTEGRALS

A direct argument, making no reference to integral representation, shows that any complex power series is termwise differentiable in its disk of convergence.

Consider a power series, centered at 0 without loss of generality, and consider also its termwise derivative,

$$
p(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad q(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}
$$

Assume that p has a positive radius of convergence, and let D denote its open disk of convergence, the open disk of convergence of q as well. Let z be any fixed point of D, so that all points ζ close enough to z also lie in D. We want to show that

$$
\lim _{\zeta \rightarrow z} \frac{p(\zeta)-p(z)}{\zeta-z}=q(z)
$$

There exists some positive r less than the radius of convergence of p such that $|z|<r$. Suppose also that $|\zeta|<r$, a condition that holds for all ζ close enough to z. For any nonnegative integer N, define the N-th partial sum and the N-th error of p,

$$
s_{N}(p ; z)=\sum_{n=0}^{N} a_{n} z^{n}, \quad e_{N}(p ; z)=\sum_{n=N+1}^{\infty} a_{n} z^{n},
$$

and define $s_{N}(q)$ and $e_{N}(q)$ similarly. Thus $p=s_{N}(p)+e_{N}(p)$ and $q=s_{N}(q)+$ $e_{N}(q)$. We want a difference to go to 0 as ζ goes to z. Decompose it into three pieces,

$$
\frac{p(\zeta)-p(z)}{\zeta-z}-q(z)=A_{N}(z, \zeta)+B_{N}(z, \zeta)+C_{N}(z)
$$

where

$$
\begin{aligned}
A_{N}(z, \zeta) & =\frac{s_{N}(p ; \zeta)-s_{N}(p ; z)}{\zeta-z}-s_{N}(q ; z) \\
B_{N}(z, \zeta) & =\frac{e_{N}(p ; \zeta)-e_{N}(p ; z)}{\zeta-z} \\
C_{N}(z) & =-e_{N}(q ; z)
\end{aligned}
$$

Let $\varepsilon>0$ be given. For any fixed $N, A_{N}(z, \zeta)$ goes to 0 as ζ goes to z, because the polynomial $s_{N}(q)$ is the derivative of the polynomial $s_{N}(p)$. Also, because $\zeta^{n}-z^{n}=(\zeta-z) \sum_{j=0}^{n-1} \zeta^{j} z^{n-1-j}$, recalling that $|z|<r$ and $|\zeta|<r$,

$$
\left|B_{N}(z, \zeta)\right|=\left|\sum_{n=N+1}^{\infty} a_{n} \frac{\zeta^{n}-z^{n}}{\zeta-z}\right|=\left|\sum_{n=N+1}^{\infty} a_{n} \sum_{j=0}^{n-1} \zeta^{j} z^{n-1-j}\right| \leq \sum_{n=N+1}^{\infty} n\left|a_{n}\right| r^{n-1}
$$

The last sum in the previous display is the tail of a convergent series because $q(r)$ converges absolutely, and so $\left|B_{N}(z, \zeta)\right|<\varepsilon$ if the fixed N is large enough and ζ is close enough to z. Further, for large enough N, we have $\left|C_{N}(z)\right|<\epsilon$ because
the power series $q(z)$ converges. Altogether, choosing N large enough establishes a statement that makes no reference to N :

$$
\text { Given } \varepsilon>0, \quad\left|\frac{p(\zeta)-p(z)}{\zeta-z}-q(z)\right|<3 \varepsilon \text { for all } \zeta \text { close enough to } z
$$

This is the desired result.
A variant argument is more direct, although it can appear more cluttered initially because it uses the difference-of-powers formula twice. We have

$$
\frac{p(\zeta)-p(z)}{\zeta-z}-q(z)=\sum_{n=1}^{\infty} a_{n}\left(\frac{\zeta^{n}-z^{n}}{\zeta-z}-n z^{n-1}\right)
$$

For $n=1$, the term in parentheses is 0 . For $n \geq 2$, it is

$$
\begin{aligned}
\frac{\zeta^{n}-z^{n}}{\zeta-z}-n z^{n-1} & =\left(\sum_{j=0}^{n-1} \zeta^{n-1-j} z^{j}\right)-n z^{n-1}=\sum_{j=0}^{n-2}\left(\zeta^{n-1-j} z^{j}-z^{n-1}\right) \\
& =\sum_{j=0}^{n-2} z^{j}\left(\zeta^{n-1-j}-z^{n-1-j}\right)=(\zeta-z) \sum_{j=0}^{n-2} \sum_{k=0}^{n-2-j} \zeta^{k} z^{n-2-k} .
\end{aligned}
$$

Note how using the difference-of-powers formula twice has moved $\zeta-z$ from the denominator to the numerator. Again with $|z|<r$ and $|\zeta|<r$ where r is less than the radius of convergence, gather and estimate the terms,

$$
\left|\frac{p(\zeta)-p(z)}{\zeta-z}-q(z)\right| \leq|\zeta-z| \sum_{n=2}^{\infty}\left|a_{n}\right| n^{2} r^{n-2}
$$

The coefficient-size in this last series is $\left|a_{n}\right| n^{2}$ rather than $\left|a_{n}\right|$, but this growth has no effect on the radius of convergence. Thus the series on the right side of the inequality converges, and so the left side goes to 0 as ζ goes to z. That is, $p^{\prime}(z)$ exists and equals $q(z)$. This is the desired result.

