
CONSEQUENCES OF POWER SERIES REPRESENTATION

1. The Uniqueness Theorem

Theorem 1.1 (Uniqueness). Let Ω ⊂ C be a region, and consider two analytic
functions

f, g : Ω −→ C.
Suppose that S is a subset of Ω that has a limit-point p ∈ Ω. (The limit-point p
need not lie in S.) Suppose that f = g on S. Then f = g.

For example, the unique analytic function on C that vanishes at 1, 1/2, 1/4, 1/8,
1/16, . . . is the zero function. For another example, the extensions by power series
of ex, sinx, cosx, and log x from their domains in R to analytic functions on C
(on C minus the negative real axis for log) are the unique possible such extensions.

Proof. We may assume that g = 0. That is, we may assume that f = 0 on S. And
we may assume that p = 0.

Let B be the largest ball about 0 in Ω. Possibly r = +∞, but in any case r > 0.
The power series representation of f at 0 is

f(z) = a0 + a1z + a2z
2 + · · · , z ∈ B.

Because 0 is a limit-point of S, some sequence {zn} in S satisfies the conditions

lim
n→∞

{zn} = 0, zn 6= 0 for all n,

Thus, since f is continuous at p and since f = 0 on S,

a0 = f(0) = lim
n→∞

{f(zn)} = lim
n→∞

{0} = 0.

So f(z) = zg(z) on B, where g(z) = a1 + a2z + z3z
2 + · · · . Note that g = 0 on S.

Similarly to a moment ago,

a1 = g(0) = lim
n→∞

{g(zn)} = lim
n→∞

{0} = 0.

Repeating the argument shows that every coefficient of the power series expansion
of f about 0 vanishes. That is, the power series expansion is 0. Thus f = 0 on B.

But we want f to be identically zero on all of Ω. So let q be any point of Ω. Since
Ω is connected and open in C, a little topology shows that it is path-connected,
and the connecting paths can be taken to be rectifiable. The general topological
principle here is that connected and locally path-connected implies path-connected,
and in our context the connecting paths can be taken to be rectifiable by metric
properties of C.

Thus some rectifiable path γ in the region Ω connects p to q. As argued in the
writeup about Cauchy’s Theorem, since γ is compact some ribbon about it lies in
the region as well (here we need only an open ribbon),

R =
⋃
z∈γ

B(z, ρ) ⊂ Ω.
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Form a chain of finitely many disks of radius ρ, with their centers spaced at most
distance ρ apart along γ, starting at p and ending at q. (This is where it matters
that γ is rectifiable.) Each consecutive pair of disks overlaps on a set S having the
center of the second disk as a limit-point. Since f is identically zero on the first
disk, the argument just given shows that is identically zero on the second disk as
well, and so on up to last disk, so that in particular f(q) = 0. This completes the
proof. �

A consequence of the Uniqueness Theorem is

Corollary 1.2. An analytic function f : Ω −→ C that is not identically zero has
isolated zeros in any compact subset K of Ω, and hence only finitely many zeros in
any such K. More generally, if f is not constant then on any compact subset K
of Ω and for any value a ∈ C, f has only finitely many a-points, meaning points
where f takes the value a.

This holds because any infinite subset S of a compact subset K has a limit-point
in K by the Bolzano–Weierstrass Theorem. So if f = a everywhere on S then f = a
identically on Ω.

2. The Maximum Principle

Theorem 2.1. Suppose that f : Ω −→ C is analytic. Then either |f | assumes no
maximum on Ω or f is constant.

Proof. Suppose that |f | assumes a maximum at some point c ∈ Ω. That is,

|f(z)| ≤ |f(c)| for all z ∈ Ω.

Some disk B = B(c, r) where r > 0 lies in Ω. For any ρ satisfying 0 < ρ < r, let γρ
be the circle about c of radius ρ, and compute that

|f(c)| =

∣∣∣∣∣ 1

2πi

∫
γρ

f(z) dz

z − c

∣∣∣∣∣ ≤ 1

2π

∫
γρ

|f(z)| |dz|
ρ

≤ 1

2πρ
sup
z∈γρ
{|f(z)|}2πρ ≤ |f(c)|.

Since the chain of inequalities starts and ends at the same value, all of the inequal-
ities must be equalities, so that |f | = |f(c)| on γρ. Since ρ ∈ (0, r) is arbitrary, in
fact |f | = |f(c)| on B. By a homework problem, f is constant on B, and so by the
Uniqueness Theorem, f is constant on Ω. �

A consequence of the Maximum Principle is

Corollary 2.2. If f : Ω −→ C is analytic and K is a compact subset of Ω then
maxz∈K{|f(z)|} is assumed on the boundary of K.

3. Liouville’s Theorem

Theorem 3.1 (Liouville’s Theorem). Let f : C −→ C be analytic and bounded.
Then f is constant.

Proof. The power series representation of f at 0 is valid for all of C,

f(z) =

∞∑
n=0

anz
n, z ∈ C.
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Let M bound |f |. Cauchy’s Inequality says that for any r > 0, and any n ∈ N,

|an| <
M

rn
.

Since r can be arbitrarily large this proves that an = 0 for n ≥ 1, i.e., f(z) = a0
for all z. �

4. The Fundamental Theorem of Algebra

Theorem 4.1 (Fundamental Theorem of Algebra). Let p(z) be a nonconstant poly-
nomial with complex coefficients. Then p has a complex root.

Proof. We may take

p(z) = zn +

n−1∑
j=0

ajz
j , n ≥ 1.

Note that for all z such that |z| ≥ 1,∣∣∣∣∣∣
n−1∑
j=0

ajz
j

∣∣∣∣∣∣ ≤ C|z|n−1 where C =

n−1∑
j=0

|aj |.

It follows that for all z such that |z| > C + 1, making a very loose overestimate at
the last step for large |z|,

|p(z)| ≥ |z|n − C|z|n−1 > |z|n−1 ≥ 1.

Now suppose that p(z) has no complex root. Then the function f(z) = 1/p(z)

is entire. The function f(z) is bounded on the compact set B(0, C + 1), and it
satisfies

|f(z)| < 1 for all z such that |z| > C + 1.

Therefore f(z) is entire and bounded, making it constant by Liouville’s Theorem,
and this make the original polynomial p(z) constant as well. The proof is complete
by contraposition. �

As a corollary, any nonconstant polynomial of degree n ≥ 1 factors down to
linear terms,

p(z) = c

n∏
j=1

(z − rj), r1, . . . , rn ∈ C.

There may be repetitions among the roots.

5. Polynomial Behavior at Infinity

Theorem 5.1. Let f : C −→ C be an entire function. For each positive integer n,
f is a polynomial of degree n if and only if

lim
|z|→+∞

|f(z)|
|z|n

exists and is a nonzero constant.

Proof. If f(z) is a polynomial of degree n,

f(z) = anz
n +

n−1∑
j=0

ajz
j , an 6= 0,
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then basic estimates show that for C =
∑n−1
j=0 |aj | and |z| ≥ 1,

|an| |z|n − C|z|n−1 ≤ |f(z)| ≤ |an| |z|n + C|z|n−1,
so that

lim
|z|→+∞

|f(z)|
|z|n

= |an|.

And in fact the estimates further show that

lim
|z|→+∞

|f(z)|
|z|m

=


+∞ if m < n,

|an| if m = n,

0 if m > n.

Conversely, if

lim
|z|→+∞

|f(z)|
|z|n

= c where c 6= 0

then
|f(z)| ≤ 2c|z|n for all z such that |z| is large enough.

Using Cauchy’s Inequality as on a homework problem, it follows that f is a poly-
nomial of degree at most n. And its degree can’t be less than n by the three-case
formula above. �

6. The Casorati–Weierstrass Theorem

An entire function that is not a polynomial is called transcendental. (This is
a special-case usage: the term “transcendental” has a more general meaning in a
broader context.)

By the homework problem mentioned above, if f : C −→ C is entire and tran-
scendental, then for any positive integer n there is a sequence {zj} in C with

lim
j
{|zj |} = +∞ and lim

j

{
|f(zj)|
|zj |n

}
= +∞.

That is, f grows faster than any polynomial on some sequence of z-values. But the
behavior of f as |z| gets large is more extreme than this, as follows.

Theorem 6.1 (Casorati–Weierstrass Theorem). Let f : C −→ C be entire and
transcendental. Given any three values ε > 0, r > 0, and c ∈ C, the set

{z ∈ C : |z| > r}
contains points z such that |f(z)− c| < ε.

The import of the theorem is that an entire transcendental function behaves
wildly as its inputs tend to infinity. Its outputs don’t simply tend to infinity very
quickly, they also go essentially everywhere.

Proof. If f has infinitely many c-points p1, p2, p3, . . . then we are done: the con-
dition |pn| ≤ r can hold for only finitely many of them, as in the corollary of the
Uniqueness Theorem, for otherwise f would be identically c rather than transcen-
dental

If f has only finitely many c-points p1, . . . , pn then the power series expansion
of f − c is

f(z)− c =

n∏
j=1

(z − pj)ej · g(z),



CONSEQUENCES OF POWER SERIES REPRESENTATION 5

where e1, . . . , en are positive integers and g is an entire function that doesn’t
vanish. Also, g is not constant since f is transcendental. Its reciprocal,

h = 1/g : C −→ C,
is entire and nonconstant, and it has no zeros, making it transcendental. Let
e =

∑n
j=1 ej . The hypothetical condition

|h(z)| ≤ |z|e+1 for all z outside some disk

would force h to be a polynomial. Since h is not a polynomial, it follows by
contraposition that the negation of the hypothetical condition must hold instead,

for any r > 0 there is some z such that |z| > r and |h(z)| > |z|e+1.

Thus there is a sequence {zn} in C such that

(1) lim
n
{|zn|} = +∞ and lim

n

{∣∣∣∣h(zn)

zen

∣∣∣∣} = +∞.

But for z away from p1, . . . , pn we have

h(z)

ze
=

∏n
j=1(z − pj)ej

ze(f(z)− c)
.

The numerator has degree e, so that in general,

lim
|z|→∞

∏n
j=1(z − pj)ej

ze
= 1.

Hence it follows from (1) that

lim
n
{|zn|} = +∞ and lim

n

{
1

|f(zn)− c|

}
= +∞.

That is,
lim
n
{|zn|} = +∞ and lim

n
{f(zn)} = c,

and this is the desired result. �

In this context, the following result deserves mention.

Theorem 6.2 (Picard’s Theorem). Let f : C −→ C be entire and transcendental.
Given any value r > 0, the set

{f(z) : |z| > r}
is all of C except at most one point.

This is a very strong theorem, and its proof is beyond us for now. Until we prove
it, do not solve problems by citing Picard’s Theorem.

As an example of Picard’s Theorem, consider the geometry of the complex ex-
ponential function. However large its input z is required to be in absolute value,
a horizontal strip of such inputs of height 2π exists, and its outputs are all of the
punctured plane.


