LOCAL COORDINATES ON MODULAR CURVES (FIGURES)

Figure 1. The fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$

Figure 2. Some $\mathrm{SL}_{2}(\mathbb{Z})$-translates of \mathcal{D}

Figure 3. Pairwise equivalence about i

Figure 4. Local coordinates at an elliptic point

Figure 5. Neighborhoods of ∞ and of some rational points

Figure 6. Local coordinates at a cusp

$\pi: \mathcal{H}^{*} \longrightarrow X(\Gamma)$ is natural projection. $U \subset \mathcal{H}^{*}$ is a neighborhood containing at most one elliptic point or cusp. The local coordinate $\varphi: \pi(U) \xrightarrow{\sim} V$ satisfies $\varphi \circ \pi=\psi$ where $\psi: U \longrightarrow V$ is a composition $\psi=\rho \circ \delta$.	
About $\tau_{0} \in \mathcal{H}$:	About $s \in \mathbb{Q} \cup\{\infty\}$:
The straightening map is $z=\delta(\tau)$ where $\delta=\left[\begin{array}{ll}1 & -\tau_{0} \\ 1 & -\bar{\tau}_{0}\end{array}\right], \delta\left(\tau_{0}\right)=0$. $\delta(U)$ is a neighborhood of 0 in \mathbb{C}.	The straightening map is $z=\delta(\tau)$ where $\delta \in \mathrm{SL}_{2}(\mathbb{Z}), \delta(s)=\infty$. $\delta(U)$ is a neighborhood of ∞ in \mathcal{H}^{*}.
The wrapping map is $q=\rho(z)$ where $\rho(z)=z^{h}, \rho(0)=0$ with period $h=\left\|\{ \pm I\} \Gamma_{\tau_{0}} /\{ \pm I\}\right\|$. $V=\rho(\delta(U))$ is a neighborhood of 0 .	The wrapping map is $q=\rho(z)$ where $\rho(z)=e^{2 \pi i z / h}, \rho(\infty)=0$ with width $h=\left\|\mathrm{SL}_{2}(\mathbb{Z})_{s} /\{ \pm I\} \Gamma_{s}\right\|$. $V=\rho(\delta(U))$ is a neighborhood of 0 .

Figure 7. Local coordinates on $X(\Gamma)$

Figure 8. Fundamental domain for $\Gamma_{0}(13)$

