LOCAL COORDINATES ON MODULAR CURVES (FIGURES)

FIGURE 1. The fundamental domain for $\mathrm{SL}_2(\mathbb{Z})$

FIGURE 2. Some $SL_2(\mathbb{Z})$ -translates of \mathcal{D}

FIGURE 3. Pairwise equivalence about i

FIGURE 4. Local coordinates at an elliptic point

Figure 5. Neighborhoods of ∞ and of some rational points

FIGURE 6. Local coordinates at a cusp

$\begin{split} \pi: \mathcal{H}^* &\longrightarrow X(\Gamma) \text{ is natural projection.} \\ U \subset \mathcal{H}^* \text{ is a neighborhood containing at most one elliptic point or cusp.} \\ \text{The local coordinate } \varphi: \pi(U) \xrightarrow{\sim} V \text{ satisfies } \varphi \circ \pi = \psi \\ \text{ where } \psi: U \longrightarrow V \text{ is a composition } \psi = \rho \circ \delta. \end{split}$	
About $\tau_0 \in \mathcal{H}$:	About $s \in \mathbb{Q} \cup \{\infty\}$:
The straightening map is $z = \delta(\tau)$	The straightening map is $z = \delta(\tau)$
where $\delta = \begin{bmatrix} 1 & -\tau_0 \\ 1 & -\overline{\tau}_0 \end{bmatrix}$, $\delta(\tau_0) = 0$.	where $\delta \in \mathrm{SL}_2(\mathbb{Z}), \ \delta(s) = \infty$.
$\delta(U)$ is a neighborhood of 0 in \mathbb{C} .	$\delta(U)$ is a neighborhood of ∞ in \mathcal{H}^* .
The wrapping map is $q = \rho(z)$	The wrapping map is $q = \rho(z)$
where $\rho(z) = z^h$, $\rho(0) = 0$	where $\rho(z) = e^{2\pi i z/h}$, $\rho(\infty) = 0$
with period $h = \{\pm I\}\Gamma_{\tau_0}/\{\pm I\} $.	with width $h = \text{SL}_2(\mathbb{Z})_s/\{\pm I\}\Gamma_s $.
$V = \rho(\delta(U))$ is a neighborhood of 0.	$V = \rho(\delta(U))$ is a neighborhood of 0.

FIGURE 7. Local coordinates on $X(\Gamma)$

FIGURE 8. Fundamental domain for $\Gamma_0(13)$