PASSING LIMITS THROUGH INTEGRALS

1. A GENERAL LEMMA

Let Q be a region in C, and let v : I — § be a rectifiable curve. By a small
abuse of notation, the symbol v will also denote the trace of the curve. Let

{ont:y—C
be a sequence of integrable functions converging uniformly to an integrable function
p:y7— C.

For example, if each ¢,, is continuous then it is integrable, and the uniform conver-
gence then guarantees that ¢ is continuous and hence integrable as well. Then

lim [ on(C)dc = / (C)dc.
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To prove this, let € > 0 be given. We may assume that v has positive length.
There exists a starting index ng such that
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It follows that for all n > ny,
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2. THE FIRST APPLICATION: HIGHER DERIVATIVES

Let Q be a region in C. Let v : I — 2 be a simple closed curve in €2, traversed
counterclockwise. Again the symbol v will also denote the trace of the curve. Let
f:Q — C be a function. Suppose that

e f is continuous on 7.
e For some positive integer k, the (k — 1)st derivative f(*~1 exists inside 7
and has the integral representations

SEDGE) 1 /f(C)dC

(k—1)! ~ 2mi
1

(C—2)*
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In particular, the case of kK = 1 is Cauchy’s integral formula, a quick consequence of
Cauchy’s Theorem if f is already known to be differentiable. But the assumptions
being made here when k = 1 do not include the existence of f/. The point is that
the argument to follow will use the integral representation of the (k—1)st derivative
to show that the kth derivative exists and has the analogous integral representation.
By induction, it follows that all derivatives of f exist inside y as soon as f itself is
known to be continuous on v and to have integral representation inside ~. Since
these conditions follow when f is known to be once-differentiable, this proves that
one complex derivative, not even known to be continuous, implies infinitely many.

Fix a generic point z inside 7. Let B be a closed ball about z entirely inside ~.
Let k be a positive integer. Define a function

©e® :Bxy—C

where

2 —z
k

f(Q)- (SO if 2/ = 2.

As shown in an earlier writeup, ¢*) is continuous, and therefore uniformly contin-
uous, so that in particular, ¢*)(2/,¢) is within any prescribed closeness to ¢(z, ()
simultaneously for all ¢ if 2’ is close enough to z.

Take a sequence {z/,} in B converging to z. Define the corresponding sequence
of functions of one variable,

{pt} iy —C o) =¢M(z,0), n=1,23,...,
and the corresponding limit function (with a slight abuse of notation),
ey —C, () = P(z,0).

The sequence {w%k)} converges uniformly to ¢*). So compute, using the lemma at
the third step, that
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Since this calculation holds for every sequence {z/,} in B that converges to z, it
shows that f (k)(z) exists and has integral representation

fPeE 1 f(Q)d¢
kU 2mi ), (¢ = )Rt

At least in the case that v is piecewise C!, to produce the same result using the
Dominated Convergence Theorem rather than our Uniform Convergence Lemma,
we quote the fact that a continuous function on a compact set is bounded, rather
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than the fact that a continuous function on a compact set is uniformly continuous.
Here the function is ¢*)(2/, ¢) : B x~y — C. Because it is continuous, the sequence
{ga(k)( ¢)} above converges pointwise to ¢*)(¢), and because it is bounded, some
constant function bounds all functions in the sequence. This is enough for the
DCT, because a constant function is integrable over a curve of finite length. The
gain in ease here, and the gain in practice at reaching for the best tool to address
a problem, need to be balanced against the investment of really understanding the
DCT.

3. THE SECOND APPLICATION: POWER SERIES REPRESENTATION

Recall the environment where

Q is a region in C,

f:Q — C is a differentiable function,

v is a circle in  such that € contains all of its interior,

R is the radius of v, a is the centerpoint of -, and z is any point interior
to 7.

We defined a sequence of functions

n Z—a k
{7 —C ol =FOY (C(_),CL

k=0

n=12.3,...,

and then their pointwise limit function,

2 (- a)t
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It follows from the integral representation of f that
_ 1 [ f(Qd¢
(z) = 2mi ), C—z
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so that by the geometric series formula, the calculation continues
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The sequence {¢,} converges to ¢ uniformly on 7, so by the lemma,
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The finite sum and the powers of z — a pass through the integral, and then the
integral representation of the derivatives of f gives the desired power series repre-
sentation of f,

IR S A {51 S
f(Z)nlﬁooI;)Qﬂ'i‘/y(C—a)kﬁ_l( )




