
PASSING LIMITS THROUGH INTEGRALS

1. A General Lemma

Let Ω be a region in C, and let γ : I −→ Ω be a rectifiable curve. By a small
abuse of notation, the symbol γ will also denote the trace of the curve. Let

{ϕn} : γ −→ C

be a sequence of integrable functions converging uniformly to an integrable function

ϕ : γ −→ C.

For example, if each ϕn is continuous then it is integrable, and the uniform conver-
gence then guarantees that ϕ is continuous and hence integrable as well. Then

lim
n→∞

∫
γ

ϕn(ζ) dζ =

∫
γ

ϕ(ζ) dζ.

To prove this, let ε > 0 be given. We may assume that γ has positive length.
There exists a starting index n0 such that

n ≥ n0 =⇒ |ϕ(ζ)− ϕn(ζ)| < ε

length(γ)
for all ζ ∈ γ.

It follows that for all n ≥ n0,∣∣∣∣∫
γ

ϕ(ζ) dζ −
∫
γ

ϕn(ζ) dζ

∣∣∣∣ =

∣∣∣∣∫
γ

(ϕ(ζ)− ϕn(ζ)) dζ

∣∣∣∣
≤
∫
γ

|ϕ(ζ)− ϕn(ζ)| |dζ|

<

∫
γ

ε

length(γ)
|dζ|

=
ε

length(γ)

∫
γ

|dζ|

= ε.

2. The First Application: Higher Derivatives

Let Ω be a region in C. Let γ : I −→ Ω be a simple closed curve in Ω, traversed
counterclockwise. Again the symbol γ will also denote the trace of the curve. Let
f : Ω −→ C be a function. Suppose that

• f is continuous on γ.
• For some positive integer k, the (k − 1)st derivative f (k−1) exists inside γ

and has the integral representations

f (k−1)(z)

(k − 1)!
=

1

2πi

∫
γ

f(ζ) dζ

(ζ − z)k
.
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In particular, the case of k = 1 is Cauchy’s integral formula, a quick consequence of
Cauchy’s Theorem if f is already known to be differentiable. But the assumptions
being made here when k = 1 do not include the existence of f ′. The point is that
the argument to follow will use the integral representation of the (k−1)st derivative
to show that the kth derivative exists and has the analogous integral representation.
By induction, it follows that all derivatives of f exist inside γ as soon as f itself is
known to be continuous on γ and to have integral representation inside γ. Since
these conditions follow when f is known to be once-differentiable, this proves that
one complex derivative, not even known to be continuous, implies infinitely many.

Fix a generic point z inside γ. Let B be a closed ball about z entirely inside γ.
Let k be a positive integer. Define a function

ϕ(k) : B × γ −→ C
where

ϕ(k)(z′, ζ) =


f(ζ) ·

(
1

(ζ−z′)k −
1

(ζ−z)k

z′ − z

)
if z′ 6= z,

f(ζ) · k

(ζ − z)k+1
if z′ = z.

As shown in an earlier writeup, ϕ(k) is continuous, and therefore uniformly contin-
uous, so that in particular, ϕ(k)(z′, ζ) is within any prescribed closeness to ϕ(z, ζ)
simultaneously for all ζ if z′ is close enough to z.

Take a sequence {z′n} in B converging to z. Define the corresponding sequence
of functions of one variable,

{ϕ(k)
n } : γ −→ C, ϕ(k)

n (ζ) = ϕ(k)(z′n, ζ), n = 1, 2, 3, . . . ,

and the corresponding limit function (with a slight abuse of notation),

ϕ(k) : γ −→ C, ϕ(k)(ζ) = ϕ(k)(z, ζ).

The sequence {ϕ(k)
n } converges uniformly to ϕ(k). So compute, using the lemma at

the third step, that

1

k!
lim
n→∞

f (k−1)(z′n)− f (k−1)(z)
z′n − z

=
1

k
lim
n→∞

1
2πi

∫
γ
f(ζ) dζ
(ζ−z′n)k

− 1
2πi

∫
γ
f(ζ) dζ
(ζ−z)k

z′n − z

=
1

k
lim
n→∞

1

2πi

∫
γ

ϕ(k)
n (ζ) dζ

=
1

2πi

∫
γ

ϕ(ζ)(k)

k
dζ

=
1

2πi

∫
γ

f(ζ) dζ

(ζ − z)k+1
.

Since this calculation holds for every sequence {z′n} in B that converges to z, it
shows that f (k)(z) exists and has integral representation

f (k)(z)

k!
=

1

2πi

∫
γ

f(ζ) dζ

(ζ − z)k+1
.

At least in the case that γ is piecewise C1, to produce the same result using the
Dominated Convergence Theorem rather than our Uniform Convergence Lemma,
we quote the fact that a continuous function on a compact set is bounded, rather
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than the fact that a continuous function on a compact set is uniformly continuous.
Here the function is ϕ(k)(z′, ζ) : B×γ −→ C. Because it is continuous, the sequence

{ϕ(k)
n (ζ)} above converges pointwise to ϕ(k)(ζ), and because it is bounded, some

constant function bounds all functions in the sequence. This is enough for the
DCT, because a constant function is integrable over a curve of finite length. The
gain in ease here, and the gain in practice at reaching for the best tool to address
a problem, need to be balanced against the investment of really understanding the
DCT.

3. The Second Application: Power Series Representation

Recall the environment where

• Ω is a region in C,
• f : Ω −→ C is a differentiable function,
• γ is a circle in Ω such that Ω contains all of its interior,
• R is the radius of γ, a is the centerpoint of γ, and z is any point interior

to γ.

We defined a sequence of functions

{ϕn} : γ −→ C, ϕn(ζ) = f(ζ)

n∑
k=0

(z − a)k

(ζ − a)k+1
, n = 1, 2, 3, . . . ,

and then their pointwise limit function,

ϕ : γ −→ C, ϕ(ζ) = f(ζ)

∞∑
k=0

(z − a)k

(ζ − a)k+1
.

It follows from the integral representation of f that

f(z) =
1

2πi

∫
γ

f(ζ) dζ

ζ − z

=
1

2πi

∫
γ

f(ζ) dζ

(ζ − a)− (z − a)

=
1

2πi

∫
γ

f(ζ) dζ

(ζ − a)
(

1− z−a
ζ−a

) ,
so that by the geometric series formula, the calculation continues

f(z) =
1

2πi

∫
γ

f(ζ)

∞∑
k=0

(z − a)k

(ζ − a)k+1
dζ

=
1

2πi

∫
γ

ϕ(ζ) dζ.

The sequence {ϕn} converges to ϕ uniformly on γ, so by the lemma,

f(z) = lim
n→∞

1

2πi

∫
γ

ϕn(ζ) dζ

= lim
n→∞

1

2πi

∫
γ

f(ζ)

n∑
k=0

(z − a)k

(ζ − a)k+1
dζ.
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The finite sum and the powers of z − a pass through the integral, and then the
integral representation of the derivatives of f gives the desired power series repre-
sentation of f ,

f(z) = lim
n→∞

n∑
k=0

1

2πi

∫
γ

f(ζ) dζ

(ζ − a)k+1
(z − a)k

= lim
n→∞

n∑
k=0

f (k)(a)

k!
(z − a)k

=

∞∑
k=0

f (k)(a)

k!
(z − a)k.


