
MATH 311: COMPLEX ANALYSIS — CONTOUR INTEGRALS

LECTURE

Recall the Residue Theorem: Let γ be a simple closed loop, traversed counter-
clockwise. Let f be a function that is analytic on γ and meromorphic inside γ.
Then ∫

γ

f(z) dz = 2πi
∑

c inside γ

Resc(f).

This writeup shows how the Residue Theorem can be applied to integrals that arise
with no reference to complex analysis.

1. Computing Residues

Proposition 1.1. Let f have a simple pole at c. Then

Resc(f) = lim
z→c

(z − c)f(z).

Proposition 1.2. Let f have a pole of order n ≥ 1 at c. Define a modified function
g(z) = (z − c)nf(z). Then

Resc(f) =
1

(n− 1)!
lim
z→c

g(n−1)(z).

Proof. It suffices to prove the second proposition, since it subsumes the first. Recall
that the residue is the the coefficient a−1 of 1/(z − c) in the Laurent series. The
proof is merely a matter of inspection:

f(z) =
a−n

(z − c)n
+ · · ·+ a−1

z − c
+ a0 + · · · ,

and so the modified function g is

g(z) = a−n + · · ·+ a−1(z − c)n−1 + a0(z − c)n + · · · ,

whose (n− 1)st derivative is

g(n−1)(z) = (n− 1)! a−1 + n(n− 1) · · · 2 a0(z − c) + · · · .

Thus

lim
z→c

g(n−1)(z) = g(n−1)(c) = (n− 1)! a−1.

This is the desired result. �

In applying the propositions, we do not go through these calculations again every
time. L’Hospital’s Rule will let us take the limits without computing the Laurent
series. Incidentally, note that a slight rearrangement of the proposition,

Resc

(
g(z)

(z − c)n+1

)
=
g(n)(c)

n!
, n ≥ 0,

shows that the Residue Theorem subsumes Cauchy’s integral representation for
derivatives.

1
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2. Rational Functions

Let f(x) = p(x)/q(x) be a rational function of the real variable x, where q(x) 6= 0
for all x ∈ R. Further assume that

deg(f) ≤ −2,

meaning that deg(q) ≥ deg(p) + 2. Then∫ ∞
x=−∞

f(x) dx = 2πi
∑

Im(c)>0

Resc(f).

Here is an example. Let

f(z) =
z2

z4 + 1
.

We want to compute the integral

I =

∫ ∞
x=−∞

f(x) dx.

To do so, let r be a large positive number, and let γ consist of two pieces: the
segment [−r, r] of the real axis and the upper half-circle γr of radius r. Thus∫

γ

f(z) dz =

∫ r

x=−r
f(x) dx+

∫
γr

f(z) dz.

On the half-circle γr we have

|f(z)| ∼ 1

r2
(since deg(f) = −2),

while the length of γr is πr. Therefore, letting the symbol “�” mean “is asymptot-
ically at most,” ∣∣∣∣∫

γr

f(z) dz

∣∣∣∣ � πr

r2
r→∞−→ 0.

On the other hand, ∫ r

x=−r
f(x) dx

r→∞−→ I,

and so ∫
γ

f(z) dz
r→∞−→ I.

But for all large enough values of r, also∫
γ

f(z) dz = 2πi
∑

Im(c)>0

Resc(f).

So to evaluate the integral I we need only compute the sum of the residues.
The denominator z4+1 of f(z) shows that f has simple poles at the fourth roots

of −1. These values are

ζ8, ζ38 , ζ58 , ζ78 , where ζ8 = e2πi/8.

Of the four roots, only ζ8 and ζ38 lie in the upper half plane. Compute, using
L’Hospital’s Rule that

lim
z→ζ8

(z − ζ8)z2

z4 + 1
= lim
z→ζ8

z2 + (z − ζ8)2z

4z3
= lim
z→ζ8

z2

4z3
= lim
z→ζ8

1

4z
=

1

4ζ8
=
ζ78
4
,
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and similarly

lim
z→ζ38

(z − ζ38 )z2

z4 + 1
=

1

4ζ38
=
ζ58
4
.

So the sum of the residues is∑
Im(c)>0

Resc(f) =
ζ58 + ζ78

4
=
−
√

2 i

4
=
−i

2
√

2
.

And consequently the integral is

I = 2πi
−i

2
√

2
=

π√
2
.

3. Rational Functions Times Sine or Cosine

Consider the integral

I =

∫ ∞
x=0

sinx

x
dx.

To evaluate this real integral using the residue calculus, define the complex function

f(z) =
eiz

z
.

This function is meromorphic on C, with its only pole being a simple pole at the
origin.

Let r be a large positive real number, and let ε be a small positive real number.
Define a contour γ consisting of four pieces:

γ = [−r,−ε] ∪ γε ∪ [ε, r] ∪ γr,
where γε is the upper half-circle of radius ε, traversed clockwise, while γr is the
upper half-circle of radius r, traversed counterclockwise. By the Residue Theorem
(which subsumes Cauchy’s Theorem),∫

γ

f(z) dz = 0.

Note that on γε we have

f(z) ∼ e0

z
=

1

z
,

so that, since γε is a half -circle traversed clockwise,∫
γε

f(z) dz ∼ −πi,

and this approximation tends to equality as ε shrinks toward 0.
Meanwhile, parametrize γr by letting z = reiθ where 0 ≤ θ ≤ π. On γr we have

|f(z)| = |f(reiθ)| =
∣∣∣∣exp(ireiθ)

reiθ

∣∣∣∣ =
| exp(ir(cos θ + i sin θ))|

r
=
e−r sin θ

r
,

and |dz| = |ireiθ dθ| = r dθ, so that∣∣∣∣∫
γr

f(z) dz

∣∣∣∣ ≤ ∫ π

θ=0

e−r sin θ dθ.

The integrand bounded above by 1 (and now matter how large r gets, the integrand
always equals 1 for θ = 0 and θ = π), but as r grows, the integrand tends to 0
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uniformly on any any compact subset of (0, π), and so the integral goes to 0 as r
goes to ∞.

The remaining two pieces of the integral are, by a change of variable,∫ −ε
x=−r

eix

x
dx+

∫ r

x=ε

eix

x
dx =

∫ ε

x=r

e−ix

−x
d(−x) +

∫ r

x=ε

eix

x
dx

=

∫ r

x=ε

eix − e−ix

x
dx

= 2i

∫ r

x=ε

sinx

x
dx.

Now let ε→ 0+ and let r →∞. Our calculation has shown that 2iI − πi = 0, i.e.,

I =
π

2
.

4. Rational Functions of Cosine and Sine

Consider the integral

I =

∫ 2π

θ=0

dθ

a+ cos θ
, a > 1.

This integral is not improper, i.e., its limits of integration are finite. The dis-
tinguishing characteristic here is that the integrand is a rational function of cos θ
and sin θ, integrated from 0 to 2π. Thus we may set

z = eiθ, 0 ≤ θ ≤ 2π,

and view the integral as a contour integral over the unit circle. On the unit circle
we have

cos θ =
z + z−1

2
, sin θ =

z − z−1

2i
, dθ =

dz

iz
.

Thus the integral becomes the integral of a rational function of z over the unit circle,
and the new integral can be computed by the residue calculus. For the particular
integral in question, the calculation is

I =

∫
|z|=1

1

a+ z+z−1

2

· dz

iz
=

2

i

∫
|z|=1

dz

z2 + 2az + 1
.

Analyze the denominator as follows:

z2 + 2az + 1 = (z − r1)(z − r2), r1 + r2 = −2a, r1r2 = 1.

Neither root lies on the unit circle since the condition a > 1 ensures that the original
denominator a+ cos θ is never zero. Let r1 be the root inside the circle and r2 be
the root outside it. Thus the integral is

I =
2

i
· 2πiResr1

(
1

(z − r1)(z − r2)

)
= 4π lim

z→r1

(z − r1)

(z − r1)(z − r2)
=

4π

(r1 − r2)
.

But the roots of the quadratic polynomial z2 + 2az + 1 are

r1, r2 =
−2a±

√
4a2 − 4

2
= −a±

√
a2 − 1,
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and so

I =
4π

(r1 − r2)
=

2π√
a2 − 1

.

5. Integration Around a Branch Point

Consider the integral

I =

∫ ∞
x=0

x−s

x+ 1
dx , 0 < s < 1.

For positive real values x we have the formula

x−s = exp(−s lnx).

Let ε be a small positive real number and r be a large positive real number. Define
a contour consisting of four pieces:

γ = γ+ ∪ γr ∪ γ− ∪ γε,
where

• γ+ is the the real axis traversed from ε up to r, viewing its points as having
argument 0,
• γr is the circle of radius r traversed counterclockwise, viewing its points as

having argument increasing from 0 to 2π,
• γ− is the the real axis traversed from r down to ε, viewing its points as

having argument 2π,
• and γε is the circle of radius ε traversed clockwise, viewing its points as

having argument decreasing from 2π to 0.

On γr we have
|z−s| = | exp(−s ln r − isθ)| = r−s,

so that, since |z + 1| ∼ r on γr, ∣∣∣∣ z−sz + 1

∣∣∣∣ � r−s

r
.

Also, γr has length 2πr, and so∣∣∣∣∫
γr

z−s

z + 1
dz

∣∣∣∣ � 2πr−s
r→∞−→ 0.

Here it is relevant that s > 0. A similar analysis, using the condition 1− s > 0 and
the fact that |z + 1| ∼ 1 on γε shows that also∣∣∣∣∫

γε

z−s

z + 1
dz

∣∣∣∣ � 2πε1−s
ε→0+−→ 0.

For points z = x on γ+ we have

z−s = x−s,

but for points z = x on γ−, where we are viewing the argument as 2π rather than 0,
we have

z−s = exp(−s log z) = exp(−s ln |z| − 2πis) = x−se−2πis.

And so (∫
γ+

+

∫
γ−

)
z−s

z + 1
dz = (1− e−2πis)

∫ r

x=ε

x−s

x+ 1
dx
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The coefficient in front of the integral is

1− e−2πis = (eπis − e−πis)e−πis = 2i sin(πs) e−πis,

and so as ε→ 0+ and r →∞, we have∫
γ

z−s

z + 1
dz −→ 2i sin(πs)e−πis I.

But also, ∫
γ

z−s

z + 1
dz = 2πiRes−1

(
z−s

z + 1

)
= 2πi(−1)−s

= 2πi exp(−s ln | − 1| − isπ)

= 2πie−πis.

In sum,
2i sin(πs)e−πisI = 2πie−πis,

so that

I =
π

sinπs
.

6. The Riemann Zeta Function for Even Integers

The Riemann zeta function is

ζ(s) =

∞∑
m=1

1

ms
, Re(s) > 1.

To evaluate ζ(k) where k ≥ 2 is an even integer, we use the meromorphic function

f(z) = π cotπz.

This function has a simple pole with residue 1 at z = 0 because for z near 0,

f(z) ∼ 1

z
.

Thus, by Z-periodicity, f has a simple pole with residue 1 at each integer.
Let n be a positive integer. Let γ be the rectangle with vertical sides at±(n+1/2)

and with horizontal sides at ±in. For any even integer k ≥ 2 we have∫
γ

π cotπz

zk
dz = 2πi

(
Res0

(
π cotπz

zk

)
+ 2

n∑
m=1

1

mk

)
.

But

π cotπz = πi
e2πiz + 1

e2πiz − 1
= πi+

2πi

e2πiz − 1
,

while from the homework we know that

2πiz

e2πiz − 1
=

∞∑
j=0

Bj
j!

(2πiz)j ,

with Bk = 0 for all odd k except for B1 = −1/2. And so

π cotπz =

∞∑
j=0

Bj
j!

(2πi)jzj−1, summing only over even j.
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Therefore,

Res0

(
π cotπz

zk

)
=

(2πi)kBk
k!

for even k ≥ 2.

Summarizing so far, the integral is∫
γ

π cotπz

zk
dz = 2πi

(
(2πi)kBk

k!
+ 2

n∑
m=1

1

mk

)
n→∞−→ 2πi

(
(2πi)kBk

k!
+ 2ζ(k)

)
.

But also, the integral tends to 0 as n gets large. To see this, estimate the
integrand π cotπz/zk on γ, by returning to the formula

π cotπz = πi+
2πi

e2πiz − 1
.

If z = ±(n+ 1/2) + iy then

e2πiz − 1 = −e−2πy − 1 < −1,

and so the formula shows that (small exercise)

if z = ±(n+ 1/2) + iy then |π cotπz| < π.

On the other hand, if z = x± in and n is large then |e2πiz| = e±2πn is either very
large or very close to 0, and in either case

if z = x± in then |π cotπz| ∼ π.
Thus two conditions hold on γ,

|π cotπz| � π and

∣∣∣∣ 1

zk

∣∣∣∣ � 1

n2
.

Since γ has length roughly 8n, it follows that∫
γ

π cotπz

zk
dz

n→∞−→ 0.

By the explicit formula for the integral, it follows that

2ζ(k) = − (2πi)kBk
k!

for even k ≥ 2.

That is,

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
,

and so on.

7. The Fourier Transform of the Gaussian

The one-dimensional Gaussian function is the function

f : R −→ R, f(x) = e−πx
2

.

An exercise in multivariable calculus shows that f is normalized,∫ ∞
−∞

f(x) dx = 1.

Its Fourier transform is the function

f̂ : R −→ R, f̂(η) =

∫ ∞
−∞

f(x)e−2πiηx dx.
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(The Fourier transform of the Gaussian is real-valued because the Gaussian is even
and the sine function is odd, so that the imaginary part of the integral vanishes.)

We use contour integration to show that f̂ = f . Compute that the integrand is

f(x)e−2πiηx = e−π(x
2+2iηx−η2)e−πη

2

= e−π(x+iη)
2

f(η),

and so the Fourier transform of f is in fact

f̂(η) = f(η)

∫ ∞
−∞

e−π(x+iη)
2

dx.

It suffices to show the integral in the previous display is 1, and to show this, it
suffices to show that the integral is the integral of the original Gaussian, since the
original Gaussian is normalized.

To show that the integral in the previous display is the integral of the Gaussian,
let γ be the rectangular contour that traverses from −r to r along the real axis,
then up to r + iη, then horizontally back to −r + iη, and finally back down to −r.
Let

f(z) = e−πz
2

.

Since f is entire, the Residue Theorem says that∫
γ

f(z) dz = 0.

Also, the integrals along the sides of the rectangle go to 0 as r gets large. This is
because if z = ±r + iy for any y between 0 and η then

|f(z)| = |e−π(±r+iy)
2

| = |e−π(r
2±2iry−y2)| = e−π(r

2−y2),

and so as soon as r � |η|, the integrand is uniformly small as y varies from 0 to η.
Since the total integral vanishes and the side integrals go to 0 as r grows, the

top and bottom integrals agree in the limit as r → ∞. But the top integral is the
integral that we want to equal 1,∫ ∞+iη

−∞+iη

e−πz
2

dz =

∫ ∞
−∞

e−π(x+iη)
2

dx,

while the bottom integral is the original Gausssian integral, which does equal 1,∫ ∞
−∞

e−πz
2

dz =

∫ ∞
−∞

e−πx
2

dx = 1.

Thus the Fourier transform equals the original Gaussian, as claimed. That is,

f̂ = f for f(x) = e−πx
2

.

8. An Extraction Integral

Let x be a positive real number, and let σ also be a positive real number. We
show that

1

2πi

∫ σ+i∞

σ−i∞

xs

s
ds =

{
1 if x > 1,

0 if 0 < x < 1,
σ > 0.

The idea of the proof is that if x > 1 then the vertical line of integration slides to
the left, picking up a residue at zero, until the integral vanishes, and if 0 < x < 1
then similarly the line slides to the right, not picking up a residue. We make this
precise.



MATH 311: COMPLEX ANALYSIS — CONTOUR INTEGRALS LECTURE 9

Let f(s) = xs/s, a meromorphic function on C whose only pole is a simple pole
at s = 0 with residue 1. Let ε > 0 be given.

Assume first that x > 1. Let a and b be large positive real numbers. Consider
the rectangle that proceeds counterclockwise from σ − ib to σ + ib to −a + ib to
−a − ib and back to σ − ib. The integral of f(z) about this rectangle is 2πi, and
the integral up the right side of the rectangle goes to the integral in the previous
display as b goes to ∞. Integrating down the left side of the rectangle, we have
f(z) = O(x−a/a), and that side has length is O(b). So if x−ab/a < ε then the
integral down the left side of the rectangle is small. On the top and bottom of the
rectangle, we have f(z) = O(1/b), and those sides have length O(a). So if a/b < ε
then the integrals along the top and bottom of the rectangle are small. Choose a
large enough that 1/ε < εxa, here using the condition that x > 1, and then choose
any b such that 1/ε < b/a < εxa. These choices give the conditions x−ab/a < ε and
a/b < ε, and the contour integral integral is close to the integral in the previous
display.

The argument for 0 < x < 1 is similar, but with the rectangle going far to the
right rather than far to the left, and this time picking up no residue.


