
LAURENT SERIES AND SINGULARITIES

1. Introduction

So far we have studied analytic functions. Locally, such functions are represented
by power series. Globally, the bounded ones are constant, the ones that get large
as their inputs get large are polynomials, and the ones that behave wildly as their
inputs get large are transcendental. That is, nonconstant analytic functions diverge
tamely or wildly at infinity.

But the Cauchy integral representation formula involves integrands that diverge
at a point inside the contour of integration. So next we will study how functions
can diverge at a point in the plane. The result will be that they can diverge tamely
or wildly at finite points as well. The functions that diverge tamely are called
meromorphic, and their series expansions are Laurent series.

2. Some Handy Formulas

let a and b be complex numbers. If |a| > |b| then

1

a− b
=

1

a
· 1

1− b/a
,

and so

(1)
1

a− b
=

∞∑
n=0

bn

an+1
=

−∞∑
n=−1

an

bn+1
, |a| > |b|.

If |a| < |b| then
1

a− b
= − 1

b− a
,

and so

(2)
1

a− b
= −

∞∑
n=0

an

bn+1
= −

−∞∑
n=−1

bn

an+1
, |a| < |b|.

Since
1

a+ b
=

1

a− (−b)
,

we also have the formulas

(3)
1

a+ b
=

∞∑
n=0

(−1)n
bn

an+1
= −

−∞∑
n=−1

(−1)n
an

bn+1
, |a| > |b|,

and

(4)
1

a+ b
=

∞∑
n=0

(−1)n
an

bn+1
= −

−∞∑
n=−1

(−1)n
bn

an+1
, |a| < |b|.
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3. Derivation of Two-sided Series

Consider an annulus in the plane,

A = {z ∈ C : R1 < |z − c| < R2}, 0 ≤ R1 < R2,

and consider an analytic function on the annulus,

f : A −→ C.

Even though the centerpoint c doesn’t lie in the annulus, f has an expansion in
powers of z − c. To see this, consider any point z ∈ A. Then z lies between two
circles,

γ1 = {ζ : |ζ − c| = r1} where R1 < r1 < |z − c|,
and

γ2 = {ζ : |ζ − c| = r2} where |z − c| < r2 < R2.

Since f is analytic on and between the circles, Cauchy’s formula gives

f(z) =
1

2πi

[∫
γ2

f(ζ) dζ

ζ − z
−
∫
γ1

f(ζ) dζ

ζ − z

]
=

1

2πi
[I2 − I1] ,

where

I2 =

∫
γ2

f(ζ) dζ

(ζ − c)− (z − c)
and

I1 =

∫
γ1

f(ζ) dζ

(ζ − c)− (z − c)
.

On γ2 we have |ζ − c| > |z − c| and so the handy formula (1) gives

I2 =

∞∑
n=0

∫
γ2

f(ζ) dζ

(ζ − c)n+1
(z − c)n.

On γ1 we have |ζ − c| < |z − c| and so the handy formula (2) gives

−I1 =

−∞∑
n=−1

∫
γ1

f(ζ) dζ

(ζ − c)n+1
(z − c)n.

(To see clearly that the sum passes through the integral in this case, take its other
form from (2), pass that through the integral instead by citing the uniform con-
vergence of geometric series on compacta, and only then change the variable of
summation.) Note that in these last two formulas, the integrand is analytic on the
entire annulus since the point of singularity has been shifted to the centerpoint c.
So the circles of integration can deform to any loop γ in the annulus that winds
once counterclockwise about the centerpoint. Thus the two-sided series expansion
of f about c is

f(z) =

∞∑
n=−∞

an(z − c)n, an =
1

2πi

∫
γ

f(ζ) dζ

(ζ − c)n+1
.

Note that these extend the formulas arising from power series representation. The
only difference is that now n can be a negative integer as well.

Each of the one-sided series
∑∞
n=0 an(z − c)n and

∑−∞
n=−1 an(z − c)n converges

on A because of its description as a contour integral. When the annulus is a
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punctured disk, the first of these series extends continuously to a0 at z = c, because
it is a power series.

The two-sided expansion of f is unique, for if also

f(z) =

∞∑
n=−∞

bn(z − c)n,

then for any m ∈ Z,

2πibm =

∞∑
n=−∞

bn

∫
γ

dζ

(ζ − c)m−n+1
=

∫
γ

∑∞
n=−∞ bn(ζ − c)n dζ

(ζ − c)m+1
=

∫
γ

f(ζ) dζ

(ζ − c)m+1

= 2πiam .

4. An Example

Before continuing to develop the general theory, it may be helpful to compute
some two-sided series by hand. The handy formulas are more relevant here than
the integral formula for the coefficients. Consider the function

f(z) =
1

(z − z1)(z − z2)
, 0 < |z1| < |z2|.

By partial fractions, this is

f(z) =
1

z1 − z2

[
1

z − z1
− 1

z − z2

]
.

(In general, the basic partial fractions formula is that for distinct z1, . . . , zn,

n∏
j=1

1

z − zj
=

n∑
j=1

aj
z − zj

where aj =
∏
k 6=j

1

zj − zk
.

To verify this, it suffices to show that

1 =

n∑
j=1

aj
∏
k 6=j

(z − zk) =

n∑
j=1

∏
k 6=j

z − zk
zj − zk

.

This is a polynomial equation in z of degree at most n − 1, and it is satisfied by
the n distinct values z1, . . . , zn, so it holds identically for all z.) Returning to the
example, if |z| < |z1| then formula (2) gives

1

z − z1
= −

∞∑
n=0

zn

zn+1
1

,

while if |z| > |z1| then formula (1) gives

1

z − z1
=

−∞∑
n=−1

zn

zn+1
1

.
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Virtually identical calculations apply to the other term 1/(z − z2). Altogether,

f(z) =
1

z1 − z2
·



∞∑
n=0

(
− 1

zn+1
1

+
1

zn+1
2

)
zn if |z| < |z1|,

−∞∑
n=−1

zn

zn+1
1

+

∞∑
n=0

zn

zn+1
2

if |z1| < |z| < |z2|,

−∞∑
n=−1

(
1

zn+1
1

− 1

zn+1
2

)
zn if |z2| < |z|.

These are the two-sided series expansions of f in powers of z.
We can also consider powers of z − z1. Here we don’t need the partial fractions

decomposition of f . The issue is only to expand 1/(z − z2) in powers of z − z1. As
usual,

1

z − z2
=

1

(z − z1)− (z2 − z1)
.

If |z − z1| < |z2 − z1| then formula (2) gives

1

z − z2
= −

∞∑
n=0

(z − z1)n

(z2 − z1)n+1
,

but if |z − z1| > |z2 − z1| then formula (1) gives

1

z − z2
=

−∞∑
n=−1

(z − z1)n

(z2 − z1)n+1
.

Thus, remembering to multiply by 1/(z − z1),

f(z) =


−

∞∑
n=−1

(z − z1)n

(z2 − z1)n+2
, if |z − z1| < |z2 − z1|,

−∞∑
n=−2

(z − z1)n

(z2 − z1)n+2
, if |z − z1| > |z2 − z1|.

These are the two-sided series expansions of f in powers of z− z1. The analysis for
powers of z − z2 is virtually identical.

5. Classification of Singularities

Now that two-sided series are familiar, we study the consequences of their exis-
tence.

Let f : Ω −→ C be analytic. Let c /∈ Ω be a point in the complement of Ω such
that some punctured disk B(c, r)−{c} lies in Ω. Then f has an isolated singularity
at c. For example, f(z) = 1/z has an isolated singularity at 0.

As usual, the two-sided series of f at c is

f(z) =

∞∑
n=−∞

an(z − c)n, 0 < |z − c| < r.

The negatively-indexed terms of the two-sided series make up its principal part ,

pp(z) =

−1∑
n=−∞

an(z − c)n.
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(Note: “principal,” not “principle.”) There are three possibilities for the principal
part of the two-sided series:

• The principal part is zero, i.e., an = 0 for all n < 0. In this case the two-
sided series is a power series, and so f extends analytically to f(c) = a0.
The singularity of f at c is removable.
• The principal part is nonzero but has only finitely many terms. That is,

for some positive integer N , an = 0 for all n < −N , and

pp(z) =
a−N

(z − c)N
+ · · ·+ a−1

z − c
, a−N 6= 0.

In this case, the singularity of f at c is a pole of order N , and (z− c)Nf(z)
has a removable singularity at c, and (z− c)N is the smallest power of z− c
that cancels the pole, making the singularity removable. The function f
is meromorphic at c. Its series expansion is called a Laurent series. By
convention, f extends to f(c) = ∞. If the original f is viewed as a map
to the Riemann sphere rather than the complex plane, then under suitable
definitions this extension is continuous and differentiable.
• The principal part has infinitely many nonzero terms. That is, an 6= 0 for

infinitely many n < 0. The singularity of f at c is essential . For no N
does (z − c)Nf(z) extend analytically to c, and there is no sensible way to
extend f to a value at c.

For example, the rational function

f(z) =
z − z2

z
, z ∈ C− {0}

has Laurent expansion 1 − z about 0 and hence its singularity at 0 is removable.
Defining f(0) = 1 extends f to f(z) = 1− z on all of C. Similarly, the function

f(z) =
1

(z − 1)2
+

5

z − 1
+ 12 + 15(z − 1)

has a pole of order 2 at c = 1, and so we define f(1) =∞. But the function

e1/z = 1 +
1

z
+

1

2z2
+

1

3!z3
+ · · ·

has an essential singularity at 0, and no definition of f(0) makes sense. The series
in the previous display is not a Laurent series.

In general, if the function f is analytic on a punctured disk about c and its
Laurent series at c is

f(z) =

∞∑
n=N

an(z − c)n (aN 6= 0),

then N is the order of vanishing (or just the order) of f at c,

ordc(f) = N.

Note that if f has a pole of order N at c then the order of f at c is not N but −N .
The order of the zero function is defined as +∞. If g behaves similarly at z then

ordc(fg) = ordc(f) + ordc(g).

Especially,

ordc(1/f) = −ordc(f).



6 LAURENT SERIES AND SINGULARITIES

(This relation will do most of problems 5(a) and 5(b) on the homework. For 5(b),
just study c = 0 and cite periodicity for other c ∈ C where f is singular.)

This discussion applies only to isolated singularities. A nonisolated singularity
is classified as such with no further elaboration.


