
KLEIN’S j-FUNCTION

Since the j-function can be used to prove Picard’s Theorem, we quickly establish
some of its properties.

For any lattice Λ ⊂ C and for any even integer k ≥ 4, recall the Eisenstein series

Gk(Λ) =
∑
ω∈Λ

′ 1
ωk
.

For any such Λ and k, and for any nonzero complex number m ∈ C×, the following
homogeneity relation is immediate:

Gk(mΛ) = m−kGk(Λ).

Indeed, lattices are modules and homogeneous functions are called forms, so that
Eisenstein series are among the earliest examples of functions called modular forms.

For any τ ∈ H, introduce notation for the lattice spanned by τ and 1,

Λτ = τZ⊕ Z.

Define the Eisenstein series of the variable τ ∈ H to be the corresponding lattice
Eisenstein series,

Gk(τ) = Gk(Λτ ), k ≥ 4 even.

This Eisenstein series of a complex variable satisfies a transformation law. Take
any automorphism of H with integer coefficients,

γ =
[
a b
c d

]
∈ SL2(Z).

Then

Gk(τ) = Gk(Λτ )

= Gk(τZ⊕ Z)

= Gk((aτ + b)Z⊕ (cτ + d)Z)

= Gk((cτ + d)
(
aτ + b

cτ + d
Z⊕ Z

)
)

= (cτ + d)−kGk(
aτ + b

cτ + d
Z⊕ Z)

= (cτ + d)−kGk(Λγτ )

= (cτ + d)−kGk(γτ).

That is, the Eisenstein transformation law is

Gk(γτ) = (cτ + d)kGk(τ), γ =
[
a b
c d

]
∈ SL2(Z), τ ∈ H.

Next, recall the notational conventions g2 = 60G4 and g3 = 140G6. The dis-
criminant function is

∆ : H −→ C, ∆(τ) = g2(τ)3 − 27g3(τ)2.
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The transformation law for the discriminant is

∆(γτ) = (cτ + d)12 ∆(τ), γ =
[
a b
c d

]
∈ SL2(Z), τ ∈ H.

Klein’s j-function is

j : H −→ C, j(τ) = 1728
g2(τ)3

∆(τ)
.

The transformation law for the j-function and the fact that SL2(Z) is called the
modular group combine to explain why j is called the modular invariant,

j(γτ) = j(τ), γ =
[
a b
c d

]
∈ SL2(Z), τ ∈ H.

As we have seen before, the change of variable

q = e2πiτ

maps the upper half plane H to the unit disk D and has horizontal period one.
Also, the condition Im (τ) → +∞ in H is equivalent to the condition q → 0 in D.
It can be shown that

j(τ) ∼ 1
q

as Im (τ)→ +∞.

That is, in some sense j has a simple pole at i∞.
On the other hand, j has no poles in H. To see this, let τ ∈ H. Let g2 and g3 be

the relevant Eisenstein series for the lattice Λτ , let ℘ be the Weierstrass function
for Λτ , and consider the cubic polynomial

f(x) = 4x3 − g2x− g3 = 4(x− ℘(τ/2))(x− ℘(1/2))(x− ℘((τ + 1)/2)).

The roots ℘(τ/2), ℘(1/2), and ℘((τ+1)/2) are distinct because ℘ takes these values
at least twice each (since ℘′ vanishes at half-lattice points), and in general ℘ takes
all of its values with total multiplicity two. So, the roots of f are distinct, meaning
that the discriminant of f is nonzero. But up to a multiplicative constant, the
discriminant is

disc(f) =

∣∣∣∣∣∣∣∣∣∣
4 0 −g2 −g3 0
0 4 0 −g2 −g3

12 0 −g2 0 0
0 12 0 −g2 0
0 0 12 0 −g2

∣∣∣∣∣∣∣∣∣∣
= −64(g3

2 − 27g2
3) = −64∆(τ).

Thus, ∆(τ) 6= 0 for all τ ∈ H, and so j has no poles in H.
The set

X = SL2(Z)\H ∪ {i∞}
can be given the structure of a compact Riemann surface. Once this is done, the
j-function is a complex analytic isomorphism from X to the Riemann sphere,

j : X ∼−→ Ĉ.


