THE COMPLEX FUNDAMENTAL THEOREM OF CALCULUS

1. The Rectifiable curve case

Let

- Ω be a region in \mathbb{C},
- $f: \Omega \longrightarrow \mathbb{C}$ be a continuous function such that $f=F^{\prime}$ for some F,
- $\gamma:[a, b] \longrightarrow \Omega$ be a continuous and rectifiable curve.

We show that

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a)) .
$$

Because γ is assumed only to be rectifiable rather than \mathcal{C}^{1}, this result does not simply reduce to the real case.

Let $\varepsilon>0$ be given.
There exists $\mu>0$ such that for any partition $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[a, b]$ having mesh less than μ, and for any subordinate sample $S_{P}=\left\{c_{1}, \ldots, c_{n}\right\}$, if we set $\zeta_{j}=\gamma\left(t_{j}\right)$ for $j=0, \ldots, n$ and $z_{j}=\gamma\left(c_{j}\right)$ for $j=1, \ldots, n$, then

$$
\begin{equation*}
\left|\sum_{j} f\left(z_{j}\right)\left(\zeta_{j}-\zeta_{j-1}\right)-\int_{\gamma} f(z) \mathrm{d} z\right|<\frac{\varepsilon}{2} . \tag{1}
\end{equation*}
$$

For each z on γ, because $f(z)=F^{\prime}(z)$ we have, using a variable ζ,

$$
F(\zeta)-F(z)-f(z)(\zeta-z)=\mathrm{o}(\zeta-z)
$$

which is to say that for some positive radius $r(z)>0$,

$$
\begin{equation*}
|F(\zeta)-F(z)-f(z)(\zeta-z)|<\frac{\varepsilon}{2 \text { length }(\gamma)}|\zeta-z|, \quad \zeta \in B(z, r(z)) \tag{2}
\end{equation*}
$$

And for each $c \in \gamma^{-1}(z)$, there is some positive radius $\delta(c)>0$ such that $\delta(c)<\mu / 2$ and $B(c, \delta(c)) \subset \gamma^{-1}(B(z, r(z)))$. Here $B(c, \delta(c))$ is simply an interval.

Because the interval $[a, b]$ is compact, its cover by the intervals $B(c, \delta(c))$ has a finite subcover $\left\{B\left(c_{j}, \delta_{j}\right): j=1, \ldots, n\right\}$ with $c_{1}<c_{2}<\cdots<c_{n}$ and $B\left(c_{j}, \delta_{j}\right) \cap$ $B\left(c_{j+1}, \delta_{j+1}\right) \neq \emptyset$ for $j=1, \ldots, n-1$. Take partition points

$$
\begin{aligned}
t_{0} & =a \in B\left(c_{1}, \delta_{1}\right) \\
t_{1} & \in B\left(c_{1}, \delta_{1}\right) \cap B\left(c_{2}, \delta_{2}\right) \\
t_{2} & \in B\left(c_{2}, \delta_{2}\right) \cap B\left(c_{3}, \delta_{3}\right) \\
\quad & \\
t_{n-1} & \in B\left(c_{n-1}, \delta_{n-1}\right) \cap B\left(c_{n}, \delta_{n}\right) \\
t_{n} & =b \in B\left(c_{n}, \delta_{n}\right)
\end{aligned}
$$

This partition has mesh less than μ.
Moving forward from the interval to the curve, let $\zeta_{j}=\gamma\left(t_{j}\right)$ for $j=0, \ldots, n$, and let $z_{j}=\gamma\left(c_{j}\right)$ for $j=1, \ldots, n$. For any $j \in\{1, \ldots, n\}$, write the j th term of a
telescoping sum minus a Riemann sum as the difference of two terms that we know are small,

$$
\begin{aligned}
F\left(\zeta_{j}\right)-F\left(\zeta_{j-1}\right)-f\left(z_{j}\right)\left(\zeta_{j}-\zeta_{j-1}\right)=(& \left.F\left(\zeta_{j}\right)-F\left(z_{j}\right)-f\left(z_{j}\right)\left(\zeta_{j}-z_{j}\right)\right) \\
& -\left(F\left(\zeta_{j-1}\right)-F\left(z_{j}\right)-f\left(z_{j}\right)\left(\zeta_{j-1}-z_{j}\right)\right),
\end{aligned}
$$

so that the estimate (2) gives

$$
\left|F\left(\zeta_{j}\right)-F\left(\zeta_{j-1}\right)-f\left(z_{j}\right)\left(\zeta_{j}-\zeta_{j-1}\right)\right|<\frac{\varepsilon}{2 \text { length }(\gamma)}\left(\left|\zeta_{j}-z_{j}\right|+\left|z_{j}-\zeta_{j-1}\right|\right)
$$

Now sum over j to get

$$
\left|F(\gamma(b))-F(\gamma(a))-\sum_{j} f\left(z_{j}\right)\left(\zeta_{j}-\zeta_{j-1}\right)\right|<\frac{\varepsilon}{2} .
$$

Further, because the partition was constructed to have mesh less than μ, the estimate (1) applies,

$$
\left|\sum_{j} f\left(z_{j}\right)\left(\zeta_{j}-\zeta_{j-1}\right)-\int_{\gamma} f(z) \mathrm{d} z\right|<\frac{\varepsilon}{2}
$$

So altogether,

$$
\left|F(\gamma(b))-F(\gamma(a))-\int_{\gamma} f(z) \mathrm{d} z\right|<\varepsilon
$$

Because $\varepsilon>0$ is arbitrary, the result follows,

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a))
$$

2. The \mathcal{C}^{1} CASE

If γ is a \mathcal{C}^{1}-curve and F is assumed to be \mathcal{C}^{1} then the complex fundamental theorem of integral calculus does reduce to the real case, as follows. We have

$$
\gamma=x+i y:[a, b] \longrightarrow \Omega
$$

and

$$
F=U+i V: \Omega \longrightarrow \mathbb{C}
$$

both \mathcal{C}^{1}, and F complex-differentiable. With $f=F^{\prime}=U_{x}+i V_{x}=V_{y}-i U_{y}$, compute

$$
\begin{aligned}
\int_{\gamma} f(z) \mathrm{d} z & =\int_{a}^{b}\left(U_{x}(\gamma(t))+i V_{x}(\gamma(t))\right)\left(x^{\prime}(t)+i y^{\prime}(t)\right) \mathrm{d} t \\
& =\int_{a}^{b}\binom{U_{x}(\gamma(t)) x^{\prime}(t)-V_{x}(\gamma(t)) y^{\prime}(t)}{+i\left(U_{x}(\gamma(t)) y^{\prime}(t)+V_{x}(\gamma(t)) x^{\prime}(t)\right)} \mathrm{d} t \\
& =\int_{a}^{b}\binom{U_{x}(\gamma(t)) x^{\prime}(t)+U_{y}(\gamma(t)) y^{\prime}(t)}{+i\left(V_{y}(\gamma(t)) y^{\prime}(t)+V_{x}(\gamma(t)) x^{\prime}(t)\right)} \mathrm{d} t \\
& =\int_{a}^{b}\left((U \circ \gamma)^{\prime}(t)+i(V \circ \gamma)^{\prime}(t)\right) \mathrm{d} t \\
& =U(\gamma(b))-U(\gamma(a))+i(V(\gamma(b))-V(\gamma(a))) \\
& =F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

