MATHEMATICS 311: COMPLEX ANALYSIS - ASSIGNMENT 8

Reading: Marsden, sections 5.1, 5.2.

Problems:

1. Consider a nonidentity fractional linear transformation

$$
S z=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](z), \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{PSL}_{2}(\mathbb{C})
$$

Show that S can be classified as elliptic, parabolic, hyperbolic, or loxodromic solely in terms of the projective trace $\pm(a+d)$, which is well defined. For example, S is elliptic if and only if $a+d$ is real and $|a+d|<2$.
2. The cross-ratio of any four distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$ is defined as

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{z_{1}-z_{3}}{z_{1}-z_{4}} \cdot \frac{z_{2}-z_{4}}{z_{2}-z_{3}} .
$$

(a) Show that $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=S z_{1}$, where S is the unique fractional linear transformation such that $S z_{2}=1, S z_{3}=0, S z_{4}=\infty$.
(b) Use part (a) to show that $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right)$ for any fractional linear transformation T.
(c) Use part (b) to show that $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real precisely when these four points lie either on the same line or the same circle.
3. (a) Show that the reflection z^{*} of the point z in the circle passing through three distinct points z_{1}, z_{2}, z_{3} is characterized by the condition

$$
\left(z^{*}, z_{1}, z_{2}, z_{3}\right)=\overline{\left(z, z_{1}, z_{2}, z_{3}\right)}
$$

(Hint for one direction: If the circle through z_{1}, z_{2}, z_{3} is centered at a and has radius R then using properties of the cross-ratio shows that

$$
\begin{aligned}
\overline{\left(z, z_{1}, z_{2}, z_{3}\right)} & =\overline{\left(z-a, z_{1}-a, z_{2}-a, z_{3}-a\right)} \\
& =\left(\bar{z}-\bar{a}, R^{2} /\left(z_{1}-a\right), R^{2} /\left(z_{2}-a\right), R^{2} /\left(z_{3}-a\right)\right) \\
& =\left(R^{2} /(\bar{z}-\bar{a}), z_{1}-a, z_{2}-a, z_{3}-a\right) \\
& =\left(R^{2} /(\bar{z}-\bar{a})+a, z_{1}, z_{2}, z_{3}\right) .
\end{aligned}
$$

Since I am giving you the calculation, explain the steps.)
(b) Suppose that z^{*} is the reflection of z in a circle C. Show that $S z^{*}$ is the reflection of $S z$ in the circle $S C$.
4. Find fractional linear transformations:
(a) R, taking the half-disk $\{z \in \mathbb{C}:|z|<1, \operatorname{Im}(z)>0\}$ to the first quadrant $\{z \in \mathbb{C}: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$.
(b) S, taking the circle $|z|=2$ to the circle $|z+1|=1$, the point -2 to the origin, and the origin to i.
(c) T, taking the circles $|z|=1$ and $|z-1 / 4|=1 / 4$ to $|z|=R$ and $|z|=1$ respectively, with $R>1$, and taking $1 / 2 \mapsto 1$. What must R be?

