MATHEMATICS 311: COMPLEX ANALYSIS — ASSIGNMENT 7

Reading: Marsden, 4.1, 4.2, 4.3, 6.2, 6.3. **Problems**:

1. Evaluate the following integrals by using residue techniques (in each case you have a template available from the lecture): $x^{2} + x$

(a)
$$\int_{-\infty}^{\infty} \frac{x^{2} dx}{x^{4} + 5x^{2} + 6},$$

(b)
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + a^{2})^{3}} \text{ where } 0 < a \in \mathbb{R},$$

(c)
$$\int_{0}^{\infty} \frac{\cos ax dx}{1 + x^{2}} \text{ where } 0 < a \in \mathbb{R},$$

(d)
$$\int_{0}^{2\pi} \frac{d\theta}{a + b \sin \theta} \text{ where } a, b \in \mathbb{R} \text{ and } a > |b| > 0,$$

(e)
$$\int_{0}^{\infty} \frac{\sqrt[3]{x} dx}{1 + x^{2}}.$$

2. Let f(z) be analytic inside and on an ellipse γ with foci at $\{-1, 1\}$. Show that

$$\frac{z+1}{z-1} \in [-\infty, 0] \iff z \in [-1, 1].$$

Consequently, one can define $\log\left(\frac{z+1}{z-1}\right)$ as a single-valued function on γ , taking $\arg\left(\frac{z+1}{z-1}\right) = \arg(z+1) - \arg(z-1),$

even though neither argument is well defined by itself. Show that

$$\int_{\gamma} f(z) \log\left(\frac{z+1}{z-1}\right) \, \mathrm{d}z = 2\pi i \int_{x=-1}^{1} f(x) \, \mathrm{d}x$$

where the right hand expression is a real integral, i.e., x runs from -1 to 1 in \mathbb{R} . (Begin by deforming the path of integration to a barbell. What is the argument of (z+1)/(z-1) on the top of the bar, and on the bottom? How does the integrand grow as the two end-circles shrink, and how does that compare to the length of the end-circles? The Residue Theorem plays no role in this problem.)

3. How many roots of the equation $z^4 - 6z + 3 = 0$ have their modulus between 1 and 2?

4. If $a \in \mathbb{R}$ and a > e, show that the equation $e^z = az^n$ has n solutions in the disk $\{z : |z| < 1\}$.