MATHEMATICS 311: COMPLEX ANALYSIS - ASSIGNMENT 7

Reading: Marsden, 4.1, 4.2, 4.3, 6.2, 6.3.
Problems:

1. Evaluate the following integrals by using residue techniques (in each case you have a template available from the lecture):
(a) $\int_{-\infty}^{\infty} \frac{x^{2} \mathrm{~d} x}{x^{4}+5 x^{2}+6}$,
(b) $\int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{\left(x^{2}+a^{2}\right)^{3}}$ where $0<a \in \mathbb{R}$,
(c) $\int_{0}^{\infty} \frac{\cos a x \mathrm{~d} x}{1+x^{2}}$ where $0<a \in \mathbb{R}$,
(d) $\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{a+b \sin \theta}$ where $a, b \in \mathbb{R}$ and $a>|b|>0$,
(e) $\int_{0}^{\infty} \frac{\sqrt[3]{x} \mathrm{~d} x}{1+x^{2}}$.
2. Let $f(z)$ be analytic inside and on an ellipse γ with foci at $\{-1,1\}$. Show that

$$
\frac{z+1}{z-1} \in[-\infty, 0] \Longleftrightarrow z \in[-1,1] .
$$

Consequently, one can define $\log \left(\frac{z+1}{z-1}\right)$ as a single-valued function on γ, taking

$$
\arg \left(\frac{z+1}{z-1}\right)=\arg (z+1)-\arg (z-1)
$$

even though neither argument is well defined by itself. Show that

$$
\int_{\gamma} f(z) \log \left(\frac{z+1}{z-1}\right) \mathrm{d} z=2 \pi i \int_{x=-1}^{1} f(x) \mathrm{d} x
$$

where the right hand expression is a real integral, i.e., x runs from -1 to 1 in \mathbb{R}. (Begin by deforming the path of integration to a barbell. What is the argument of $(z+1) /(z-1)$ on the top of the bar, and on the bottom? How does the integrand grow as the two end-circles shrink, and how does that compare to the length of the end-circles? The Residue Theorem plays no role in this problem.)
3. How many roots of the equation $z^{4}-6 z+3=0$ have their modulus between 1 and 2 ?
4. If $a \in \mathbb{R}$ and $a>e$, show that the equation $e^{z}=a z^{n}$ has n solutions in the disk $\{z:|z|<1\}$.

