MATHEMATICS 311: COMPLEX ANALYSIS - ASSIGNMENT 6

Reading: Marsden, section 3.3.
Problems: 1. Let $f(z)$ be analytic in the entire complex plane \mathbb{C}, and set $M(r)=\sup _{|z|=r}|f(z)|$. Show that $M\left(r_{1}\right) \leq M\left(r_{2}\right)$ whenever $r_{1}<r_{2}$, and determine when equality can occur.
2. Find all expansions in powers of z of the function

$$
f(z)=\frac{1}{z^{2}\left(z^{2}+1\right)\left(z^{2}+9\right)} .
$$

(Note that z^{2} is already a power of z. Use partial fractions and then the handy formulas from class.)
3. Find all expansions in powers of $z-1$ and in powers of $z+1 / 2$ of the function

$$
f(z)=\frac{1}{(2 z+1)(z-1)}
$$

(There is no need to use partial fractions on this problem.)
4. Suppose $f(z)$ is analytic in the strip $a<y<b$ (where $z=x+i y$) and satisfies $f(z+1)=f(z)$. Show that $f(z)$ has a complex Fourier expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} e^{2 \pi i n z}
$$

converging at all points of this strip, where

$$
a_{n}=e^{\pi n(a+b)} \int_{x=0}^{1} e^{-2 \pi i n x} f\left(x+\frac{a+b}{2} i\right) \mathrm{d} x
$$

(Suggestion: Consider the mapping $w=e^{2 \pi i z}$. Show that $f(z)$ determines an analytic function of w in the appropriate region, and use the two-sided expansion. Indicate where the hypothesis $f(z+1)=f(z)$ is needed.)

5 . Find all singular points (either in the finite complex plane \mathbb{C} or at ∞) of the following functions, and for each one indicate whether it is nonisolated, essential, a pole, or removable.
(a) $f(z)=1 /[(2 z+1)(z-1)]$;
(b) $f(z)=1 /\left(e^{z}-1\right)$;
(c) $f(z)=\pi / \sin (\pi / z)$.

