MATHEMATICS 311: COMPLEX ANALYSIS - ASSIGNMENT 5

Reading: Marsden, sections 3.1, 3.2.
Problems: 1. The Bernoulli numbers B_{n} are defined to be the coefficients of the power series expansion

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}
$$

(a) Show that $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6$. (Hint: Expand the double power series $z=\left(e^{z}-1\right) \sum\left(B_{n} / n!\right) z^{n}$.)
(b) Show that in general these numbers satisfy the recurrence formula

$$
\binom{n}{0} B_{0}+\binom{n}{1} B_{1}+\binom{n}{2} B_{2}+\cdots+\binom{n}{n-1} B_{n-1}=0, \quad(n>1)
$$

so they are all rational numbers. Note that this formula can be written symbolically $(B+1)^{n}=B^{n}$, for expanding the left-hand side by the binomial formula then replacing B^{k} by B_{k} yields the recurrence. (Hint: Rearrange the double sum in (a).)
(c) Show that

$$
\frac{z}{e^{z}-1}+\frac{z}{2}=\frac{z}{2} \frac{e^{z}+1}{e^{z}-1}
$$

note that this is an even function and conclude that $B_{n}=0$ whenever n is odd and greater than 1.
(d) Show by using the preceding formula that

$$
z \cot z=\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n} B_{2 n}}{(2 n)!} z^{2 n}
$$

(e) Show by using the preceding formula and the formula $\tan z=\cot z-2 \cot 2 z$ that

$$
\tan z=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{2 n}\left(2^{2 n}-1\right) B_{2 n}}{(2 n)!} z^{2 n-1}
$$

The notation for the Bernoulli numbers differs somewhat, so be careful when comparing formulas from various sources. The Bernoulli numbers vary rather mysteriously and erratically; for your information,

$$
\begin{aligned}
& B_{4}=-1 / 30, \quad B_{6}=1 / 42, \quad B_{8}=-1 / 30, \quad B_{10}=5 / 66 \\
& B_{12}=-691 / 2730, \quad B_{14}=7 / 6, \quad B_{20}=-174611 / 330 \\
& B_{30}=8615841276005 / 14322
\end{aligned}
$$

2. Derive the power series expansions

$$
\begin{aligned}
& e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad \log (1+z)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^{n} \\
& \sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}, \quad \cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n}
\end{aligned}
$$

and find the radius of convergence of each.
3. Let $f(z)$ be the analytic function in the disk $D=\{z:|z|<1\}$ for which $f^{\prime}(z)=1 /\left(1+z^{2}\right)$ and $f(0)=0$. From the power series expansion

$$
\frac{1}{1+z^{2}}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}
$$

deduce the power series expansion

$$
f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{2 n+1}
$$

and indicate why your deduction is justified. What is the radius of convergence of this series? Show that

$$
\frac{d}{d z}(f(\tan z))=1 \text { and } f(\tan z)=z
$$

in a disk about the origin, so that $f(z)$ may be viewed as the inverse tangent function there.

