SYMMETRY OF THE GAMMA FUNCTION

In the open right complex half plane, the gamma function is

$$
\Gamma(s)=\int_{t=0}^{\infty} t^{s} e^{-t} \frac{\mathrm{~d} t}{t}, \quad \operatorname{Re}(s)>0
$$

Two basic properties of gamma are

- $\Gamma(1)=1$ and $\Gamma(1 / 2)=\sqrt{\pi}$.
- $\Gamma(s+1)=s \Gamma(s)$, so that $\Gamma(n+1)=n$! for $n=0,1,2, \cdots$.

The volume of the n-dimensional unit ball is $\pi^{n / 2} /(n / 2)$! for $n=1,2,3, \cdots$, where naturally $(n / 2)$! is understood to mean $\Gamma(n / 2+1)$.

Various methods extend the gamma function meromorphically to the full complex plane. One approach is to note that the left side of the equality

$$
\Gamma(s+1)=s \Gamma(s)
$$

is defined on the larger half plane $\operatorname{Re}(s)>-1$, defining the right side on the larger half plane as well; now the left side is defined on $\operatorname{Re}(s)>-2$, and so on.

A second approach is to note that the integral $\int_{t=0}^{\infty} t^{s} e^{-t} \mathrm{~d} t / t$ converges robustly for all complex s at its upper endpoint and is fragile only at its lower endpoint, requiring $\operatorname{Re}(s)>0$ there. Thus, for $\operatorname{Re}(s)>0$ we break the integral into two pieces and then pass the exponential power series through the first one,

$$
\begin{aligned}
\Gamma(s) & =\int_{t=0}^{1} t^{s} e^{-t} \frac{\mathrm{~d} t}{t}+\int_{t=1}^{\infty} t^{s} e^{-t} \frac{\mathrm{~d} t}{t} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{t=0}^{1} t^{s+n} \frac{\mathrm{~d} t}{t}+\int_{t=1}^{\infty} t^{s} e^{-t} \frac{\mathrm{~d} t}{t} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(s+n)}+\int_{t=1}^{\infty} t^{s} e^{-t} \frac{\mathrm{~d} t}{t} .
\end{aligned}
$$

The last expression just computed extends meromorphically to \mathbb{C}, with a simple pole at each nonpositive integer $-n$, where the residue is $(-1)^{n} / n$!.

A third approach is suggested by the second one, as follows. Because $\Gamma(s)$ has a simple pole at each nonpositive integer as just described, $\Gamma(s) \Gamma(1-s)$ has a simple pole at every integer. Further the residue of $\Gamma(s) \Gamma(1-s)$ at any nonpositive integer $-n$ is $(-1)^{n}$ because $\Gamma(n+1)=n$!. And because $\Gamma(s) \Gamma(1-s)$ is symmetric about the vertical line $\operatorname{Re}(s)=1 / 2$, similarly its residue at any positive integer n is also $(-1)^{n}$. All these properties of $\Gamma(s) \Gamma(1-s)$ are shared by the function $\pi / \sin \pi s$, and so we wonder how the two are related.

In fact they are equal. It suffices to show that

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}, \quad 0<\operatorname{Re}(s)<1
$$

And then this identity can be used to extend $\Gamma(s)$ meromorphically to \mathbb{C} without reference to the arguments given above. With these ideas in mind, this writeup establishes the boxed identity.

The Haar measure of the multiplicative group of positive real numbers $\left(\mathbb{R}_{>0}^{\times}, \cdot\right)$ is

$$
\mathrm{d} \mu(t)=\frac{\mathrm{d} t}{t}
$$

Compatibly with the familiar rules $\mathrm{d}(t+c)=\mathrm{d} t$ and $\mathrm{d}(a t)=a \mathrm{~d} t$ for the usual measure $\mathrm{d} t$ of the additive group $(\mathbb{R},+)$, we have

$$
\mathrm{d} \mu(c t)=\frac{\mathrm{d}(c t)}{c t}=\frac{\mathrm{d} t}{t}=\mathrm{d} \mu(t)
$$

and

$$
\mathrm{d} \mu\left(t^{a}\right)=\frac{\mathrm{d}\left(t^{a}\right)}{t^{a}}=a \frac{\mathrm{~d} t}{t}=a \mathrm{~d} \mu(t)
$$

The integral $\int_{t=1}^{\infty} t^{s} \mathrm{~d} \mu(t)$ converges for $\operatorname{Re}(s)<0$, and so, because $\mathrm{d} \mu\left(t^{-1}\right)=$ $-\mathrm{d} \mu(t)$, the integral $\int_{t=0}^{1} t^{s} \mathrm{~d} \mu(t)$ converges for $\operatorname{Re}(s)>0$.

The definition of the gamma function as an integral is really

$$
\Gamma(s)=\int_{\mathbb{R}_{>0}^{\times}} t^{s} e^{-t} \mathrm{~d} \mu(t), \quad \operatorname{Re}(s)>0
$$

In the usual notation for the gamma integral as in integral from 0 to ∞, it should be understood that the lower limit of integration 0 is just as improper as the upper limit ∞. Despite the lower limit of integration being improper, the integral converges for $\operatorname{Re}(s)>0$, as just explained. Also, the gamma integral converges at its improper upper limit of integration because the exponential decay of e^{-t} dominates the polynomial growth of t^{s}.

Now we establish the desired identity,

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}, \quad 0<\operatorname{Re}(s)<1
$$

To do so, it suffices to consider only real s between 0 and 1 . For such s, the definition of gamma gives

$$
\Gamma(s) \Gamma(1-s)=\iint_{\mathbb{R}_{>0}^{\times} \times \mathbb{R}_{>0}^{\times}} w^{s} x^{1-s} e^{-w-x} \mathrm{~d} \mu(x) \mathrm{d} \mu(w)
$$

Replace x by $w x$ and recall that $\mathrm{d} \mu(w x)=\mathrm{d} \mu(x)$,

$$
\Gamma(s) \Gamma(1-s)=\iint_{\mathbb{R}_{>0}^{\times} \times \mathbb{R}_{>0}^{\times}} w x^{1-s} e^{-w(1+x)} \mathrm{d} \mu(x) \mathrm{d} \mu(w)
$$

Exchange the order of integration and change to ordinary measure,

$$
\Gamma(s) \Gamma(1-s)=\int_{x=0}^{\infty} x^{-s} \int_{w=0}^{\infty} e^{-(1+x) w} \mathrm{~d} w \mathrm{~d} x
$$

The inner integral is $1 /(1+x)$, leaving

$$
\Gamma(s) \Gamma(1-s)=\int_{x=0}^{\infty} \frac{x^{-s} \mathrm{~d} x}{1+x}
$$

And we have evaluated this last integral by contour integration,

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}, \quad 0<s<1
$$

As above, the result extends by uniqueness to all complex s such that $0<\operatorname{Re}(s)<1$, and then it extends Γ to all of \mathbb{C}.

