SKETCH OF FUNCTION THEORY ON COMPLEX TORI

In class we have shown that if A C C is a lattice and
f:C/A —C

is a nonzero meromorphic function then three necessary conditions follow from short
contour integral calculations:

(1) >cec/arese(f) = 0. That is, the sum of the residues of f is zero. This
condition rules out the possibility of a meromorphic function on C/A having
only one simple pole.

(2) Xcec/norde(f) = 0. That is, the net order of vanishing of f is zero.
(Indeed, this holds with any compact Riemann surface in place of C/A:
triangulate the surface so that the triangle-sides avoid the finitely many
zeros and poles of f; then the sum of the integrals of f'(z)/f(z) around all
the triangles is zero by cancellation, but also it is the net order of vanishing.)

(3) 2cec/norde(f) ¢ =0in C/A. That is, the sum of the points where f has
zeros and poles, each such point ¢ summed as many times as f vanishes
there, is zero under the group law of C/A.

These conditions are also sufficient. Specifically, after introducing some building-
block functions in the next section, this writeup constructs a A-periodic function
with any feasible prescribed vanishing behavior, and also this writeup constructs a
A-periodic function with any feasible prescribed principal parts.

The second part of this writeup shows that the field of meromorphic functions
on a complex torus is the field of rational functions in the Weierstrass p-function
and its derivative.

1. CONSTRUCTIONS

1.1. Weierstrass’s o-function, (-function, and gp-function. The Weierstrass
o-function,

c:C—C,
is
i
o(z) ==z]] (1 - i) e#/wt3 (/W)
weA w

Since this function has simple zeros at the two-dimensional lattice A C C just as
the function s(x) = sin7z has simple zeros at the one-dimensional lattice Z C R,
it is named o by analogy.

(The exponential factors are needed to make the infinite product converge. A
full explanation of this would take us too far afield, but the basic idea is that for
the product to converge to a nonzero value, the value needs to be the exponential
of the sum of the logarithms of the multiplicands. The relevant question becomes
whether the sum

log z + Z/log ((1 - z/w)eZ/w+%(z/w)2)

weA
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converges absolutely and uniformly on compacta. And it does, because for small
enough |z| the logarithm of the product is the sum of the logarithms,

1
log ((1 — z/w)ez/”+§(z/w)2) =log(l — z/w) + z/w + % (z/w)?,
and the power series expansion of the logarithm is
log(l — z/w) = —z/w — %(z/w)2 - %(z/w)3 —

Thus the summmand is O((z/w)3). As discussed in class, this is small enough to
make the sum converge nicely. Consequently the infinite product o(z) converges to
a holomorphic function on C. The theory of infinite products is covered in many
texts. See, for example, Complex Functions by Jones and Singerman.)

The Weierstrass (-function,
¢:C—C,

emphatically is not the Euler—Riemann (-function, but instead is

) =tonlo ) =28 =14 T (Ao 1e ).

_ w2
o(z) 2 i \rmw v w

This function has simple poles with residue 1 at the lattice points, analogously to
the logarithmic derivative m cot wz of sin 7wz, but it isn’t quite periodic with respect
to A. However, let A = wiZ ® weZ where wy/wy € H. Since the Weierstrass
p-function p = —(’ is A-periodic, the quantities

nj=C(z+w) —¢(2), j=1,2

are independent of z, i.e., they are lattice constants. Now we have the transforma-
tion laws

[CG+w)=CE) +m, j=12]

Consequently,
olz+w)\Y ,
(log (U(z)j>) =((z+wj) —C(z)=mn;, =12,
and thus for some constant c,
log (a(z + wj)

O'(Z) ) njz+c7 ] » <

or
o(z4+w;) =o(z)e"%e, j=1,2,

To determine e, note that the definition of o shows that ¢ is odd. Therefore,
setting z = —w; /2 gives

o(w;/2) = —o(w;/2)e %/ 2,

And so e® = —e"% /2 giving

o(z +wj) = —o(2)emErei/D =12,

Incidentally, the lattice constants satisfy the Legendre relation,

oW1 — MMws = 2mi.
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1.2. Constructing a function with specified vanishing. Now let n be a posi-
tive integer, and consider a set of data
al,...,an,bl,...,bn eC

where a; through a, can contain repeats, as can by through b,, but no a; and b;
are equal modulo the lattice A. Suppose further that

D ai—=Y bi€A
i i
This condition forces n > 2. We want to define a meromorphic function

f:C/A —C

with zeros at the a;, the degree of each zero being the number of times that the
corresponding a; repeats, and similarly for poles at the b;. Such a function will
satisfy the second of our three necessary conditions, > ord.(f) = 0, and also the
third, Y ord.(f) -¢=0in C/A.

Translating b,, by some lattice element A € A, which has no effect on the coset
b, + A € C/A, we may assume that in fact

Zai—Zbi =0.

Now consider the function

FiC—C  f(z) = iotza)

’ [L;0(z—bi)

This function is meromorphic, and it has the specified zeros and poles. The question
is whether f is A-periodic. So compute for j = 1,2 that
[Iio(z —ai +w))
;0(z — b + wj)
D[ 0(z — a;)eni (zmaitwi/2)
D [T 0(z — bi)eni(z=bitw;/2)

flz+wj) =

g

[I

(-

(— (

[[;0(z —a;) e (bi—as)
[[;o(z —b;) H
Mem S (bi—ar)
[I;o(z—b;)
[[;o(z—as)
[[io(z—b;)

<.

q

q

q

Q

7

<.

~ ().

Thus f is indeed A-periodic, giving a meromorphic function on the torus with the
specified zeros and poles.

7

1.3. Constructing a function with specified principal parts. Recall that the
Weierstrass p-function,

is
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Define also for each integer k > 3,

k"
Lz w)

(Thus Fj, = (=1)*p*=2) /(k—1)!.) Recall that the Weierstrass (-function has simple
poles with residue 1 at the lattice points w € A. More specifically, its Laurent series
at 0 is

1
¢(z) = — + holomorphic in z.
z
Similarly, the Weierstrass p-function Laurent series has a double pole at 0 and
Laurent series )
9(z) = — + holomorphic in 2,
z

while for £ > 3 the functions F}, have k-fold poles at 0 and Laurent series
1
Fy(2) = — + holomorphic in z.
z

Now let z; through z,, be distinct modulo A, and consider a set of principal part
data
1,1 €2 L4 %m
z—z1  (z2—21)2 (z—2z1)™

C2,1 C2.2 C2.n
Ps(z) = — d 44—
2(2) z2—29 (22— 29)2 (z — 29)™

Cm,1 Cm,2 Cm,n
P — 2 2 e _|_ —_ m
m(z) z— 2, + (Z — Zm)2 + (Z — Zm)nm

where the coefficients of the minus-first powers sum to zero,
11+ +emn =0.

These data might describe the principal parts of a meromorphic function on C/A
at its poles, since the residues of the putative function sum to zero.
The meromorphic function on C with the desired principal parts is

f(z) =c11C(z = 21) + c120(2 — 21) + -+ + €10, oy (2 — 21)
+c21C(2 — 22) + C220(2 — 22) + - - + Copy Frp (2 — 22)

+ Cm,lg(z - Zm) + Cm,QW(Z - Zm) +---+ Cm,annm (Z - zm)-

More briefly, f(2) = 3_, ; ¢ jFj(2—2;) where now Fy = ¢ and F5 = p. The question
is whether f is A-periodic. Since the Weierstrass p-function and its derivatives are
A-periodic, the question bears only on the subfunction

9(2)201’14(2—21)4- +Cm 1( Z_Zm Zcz IC Z_Zz
Compute for j = 1,2 that
Z+wj ZCZlC zi—l—wj ZCZl +77J —g +77]ZCzl

And thus g(z + wj) = ¢(z) because Zi ci1=0.
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2. THE FIELD OF MEROMORPHIC FUNCTIONS ON A COMPLEX TORUS

Let A be a lattice, and let p be its associated Weierstrass function. We show that
the field of meromorphic functions on C/A—or, equivalently, the field of A-periodic
meromorphic functions on C—is as simple as it possibly could be: it is only the
field of rational functions in g and g/,

C(p, ),
and in fact this field is
Clp)lp'l ={f(p) + ¢'9(p) : f, g rational functions}.

So up to isomorphism, the function field is generated by two transcendental quan-
tities over C that satisfy an algebraic relation,

C(z,y)/(y* = 42° — goxw — g3).

To establish the desired result, consider any meromorphic function f on C/A,
and introducing two resulting even functions,

fiy = TR 1(=2)

2 K
Then we have the decomposition

f(2) = fi(z) + ¢'(2) fa(2).
This reduces the problem to showing that the field of even meromorphic functions
on C/A is C(p).
So now consider any even meromorphic function f on C/A, where A = w1 Z&w-Z.
Its expansion about 0 is

1) = f(=2)

fal2) = 2¢/(2)

f(z) = Z anz"™, 2z mnear 0,

and so all powers of z in this expansion are even. In particular, the vanishing order
vo(f) is even. Similarly, the expansion of f about w;/2 is

f(z) = Z bn(z — %)™, 2 mnear 0.
n>vy, s2(f)
Define a related meromorphic function on C/A,
9(z) = f(z+ %)

To see that g is even because f is even and because % is its own inverse in C/A,
compute

g(=2) =f(-z+ %) =f-2 =S +tw) = f(-2=F) = flz+ 5) = 9(2).

Thus the order of g at 0 is even, as shown earlier in this paragraph. But the Laurent
expansion of g about 0 is

g9(z) = Z bn2z™, zmnear 0.

n>vy, s2(f)

Thus v, /2(f) is even. Similarly, v, /2(f) and v, yu,)/2(f) are even.



6 SKETCH OF FUNCTION THEORY ON COMPLEX TORI

All points of C/A come in opposite pairs {#p}, other than (the cosets of) the
four points ¢ = 0, %, %2, @1t@2 - Given the even meromorphic function f on C/A,
consider the related function
() = [1(0(z) = 0)"* D [T (0(2) = p(a)) P72,
P q

The first product in the previous display chooses either point of each pair {+p}.
The function ¢ is a rational function in p. Because p takes the values g to order 2,
the function ¢ has the same order of vanishing as f everywhere. Thus their quotient
is analytic and doubly periodic, making it constant, and so f is a rational function
in p as well. This completes the argument.



