
SKETCH OF FUNCTION THEORY ON COMPLEX TORI

In class we have shown that if Λ ⊂ C is a lattice and

f : C/Λ −→ Ĉ

is a nonzero meromorphic function then three necessary conditions follow from short
contour integral calculations:

(1)
∑
c∈C/Λ resc(f) = 0. That is, the sum of the residues of f is zero. This

condition rules out the possibility of a meromorphic function on C/Λ having
only one simple pole.

(2)
∑
c∈C/Λ ordc(f) = 0. That is, the net order of vanishing of f is zero.

(Indeed, this holds with any compact Riemann surface in place of C/Λ:
triangulate the surface so that the triangle-sides avoid the finitely many
zeros and poles of f ; then the sum of the integrals of f ′(z)/f(z) around all
the triangles is zero by cancellation, but also it is the net order of vanishing.)

(3)
∑
c∈C/Λ ordc(f) · c = 0 in C/Λ. That is, the sum of the points where f has

zeros and poles, each such point c summed as many times as f vanishes
there, is zero under the group law of C/Λ.

These conditions are also sufficient. Specifically, after introducing some building-
block functions in the next section, this writeup constructs a Λ-periodic function
with any feasible prescribed vanishing behavior, and also this writeup constructs a
Λ-periodic function with any feasible prescribed principal parts.

The second part of this writeup shows that the field of meromorphic functions
on a complex torus is the field of rational functions in the Weierstrass ℘-function
and its derivative.

1. Constructions

1.1. Weierstrass’s σ-function, ζ-function, and ℘-function. The Weierstrass
σ-function,

σ : C −→ C,
is

σ(z) = z
∏
ω∈Λ

′ (
1− z

ω

)
ez/ω+ 1

2 (z/ω)2 .

Since this function has simple zeros at the two-dimensional lattice Λ ⊂ C just as
the function s(x) = sinπx has simple zeros at the one-dimensional lattice Z ⊂ R,
it is named σ by analogy.

(The exponential factors are needed to make the infinite product converge. A
full explanation of this would take us too far afield, but the basic idea is that for
the product to converge to a nonzero value, the value needs to be the exponential
of the sum of the logarithms of the multiplicands. The relevant question becomes
whether the sum

log z +
∑
ω∈Λ

′
log
(

(1− z/ω)ez/ω+ 1
2 (z/ω)2

)
1



2 SKETCH OF FUNCTION THEORY ON COMPLEX TORI

converges absolutely and uniformly on compacta. And it does, because for small
enough |z| the logarithm of the product is the sum of the logarithms,

log
(
(1− z/ω)ez/ω+

1
2 (z/ω)2

)
= log(1− z/ω) + z/ω + 1

2 (z/ω)2,

and the power series expansion of the logarithm is

log(1− z/w) = −z/ω − 1
2 (z/ω)2 − 1

3 (z/ω)3 − · · · .

Thus the summmand is O((z/ω)3). As discussed in class, this is small enough to
make the sum converge nicely. Consequently the infinite product σ(z) converges to
a holomorphic function on C. The theory of infinite products is covered in many
texts. See, for example, Complex Functions by Jones and Singerman.)

The Weierstrass ζ-function,

ζ : C −→ Ĉ,

emphatically is not the Euler–Riemann ζ-function, but instead is

ζ(z) = log(σ(z))
′

=
σ′(z)

σ(z)
=

1

z
+
∑
ω∈Λ

′
(

1

z − ω
+

1

ω
+

z

ω2

)
.

This function has simple poles with residue 1 at the lattice points, analogously to
the logarithmic derivative π cotπx of sinπx, but it isn’t quite periodic with respect
to Λ. However, let Λ = ω1Z ⊕ ω2Z where ω1/ω2 ∈ H. Since the Weierstrass
℘-function ℘ = −ζ ′ is Λ-periodic, the quantities

ηj = ζ(z + ωj)− ζ(z), j = 1, 2

are independent of z, i.e., they are lattice constants. Now we have the transforma-
tion laws

ζ(z + ωj) = ζ(z) + ηj , j = 1, 2.

Consequently,(
log

(
σ(z + ωj)

σ(z)

))′
= ζ(z + ωj)− ζ(z) = ηj , j = 1, 2,

and thus for some constant c,

log

(
σ(z + ωj)

σ(z)

)
= ηjz + c, j = 1, 2,

or

σ(z + ωj) = σ(z)eηjzec, j = 1, 2,

To determine ec, note that the definition of σ shows that σ is odd. Therefore,
setting z = −ωj/2 gives

σ(ωj/2) = −σ(ωj/2)e−ηjσj/2ec.

And so ec = −eηjσj/2, giving

σ(z + ωj) = −σ(z)eηj(z+ωj/2), j = 1, 2.

Incidentally, the lattice constants satisfy the Legendre relation,

η2ω1 − η1ω2 = 2πi.



SKETCH OF FUNCTION THEORY ON COMPLEX TORI 3

1.2. Constructing a function with specified vanishing. Now let n be a posi-
tive integer, and consider a set of data

a1, . . . , an, b1, . . . , bn ∈ C

where a1 through an can contain repeats, as can b1 through bn, but no ai and bj
are equal modulo the lattice Λ. Suppose further that∑

i

ai −
∑
i

bi ∈ Λ.

This condition forces n ≥ 2. We want to define a meromorphic function

f : C/Λ −→ Ĉ

with zeros at the ai, the degree of each zero being the number of times that the
corresponding ai repeats, and similarly for poles at the bi. Such a function will
satisfy the second of our three necessary conditions,

∑
c ordc(f) = 0, and also the

third,
∑
c ordc(f) · c = 0 in C/Λ.

Translating bn by some lattice element λ ∈ Λ, which has no effect on the coset
bn + Λ ∈ C/Λ, we may assume that in fact∑

i

ai −
∑
i

bi = 0.

Now consider the function

f : C −→ Ĉ, f(z) =

∏
i σ(z − ai)∏
i σ(z − bi)

.

This function is meromorphic, and it has the specified zeros and poles. The question
is whether f is Λ-periodic. So compute for j = 1, 2 that

f(z + ωj) =

∏
i σ(z − ai + ωj)∏
i σ(z − bi + ωj)

=
(−1)n

∏
i σ(z − ai)eηj(z−ai+ωj/2)

(−1)n
∏
i σ(z − bi)eηj(z−bi+ωj/2)

=

∏
i σ(z − ai)∏
i σ(z − bi)

∏
i

eηj(bi−ai)

=

∏
i σ(z − ai)∏
i σ(z − bi)

eηj
∑

i(bi−ai)

=

∏
i σ(z − ai)∏
i σ(z − bi)

= f(z).

Thus f is indeed Λ-periodic, giving a meromorphic function on the torus with the
specified zeros and poles.

1.3. Constructing a function with specified principal parts. Recall that the
Weierstrass ℘-function,

℘ : C −→ Ĉ
is

℘(z) = −ζ ′(z) =
1

z2
+
∑
ω∈Λ

′
(

1

(z − ω)2
− 1

ω2

)
.
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Define also for each integer k ≥ 3,

Fk : C −→ Ĉ, Fk(z) =
∑
ω∈Λ

1

(z − ω)k
.

(Thus Fk = (−1)k℘(k−2)/(k−1)!.) Recall that the Weierstrass ζ-function has simple
poles with residue 1 at the lattice points ω ∈ Λ. More specifically, its Laurent series
at 0 is

ζ(z) =
1

z
+ holomorphic in z.

Similarly, the Weierstrass ℘-function Laurent series has a double pole at 0 and
Laurent series

℘(z) =
1

z2
+ holomorphic in z,

while for k ≥ 3 the functions Fk have k-fold poles at 0 and Laurent series

Fk(z) =
1

zk
+ holomorphic in z.

Now let z1 through zm be distinct modulo Λ, and consider a set of principal part
data

P1(z) =
c1,1
z − z1

+
c1,2

(z − z1)2
+ · · ·+ c1,n1

(z − z1)n1

P2(z) =
c2,1
z − z2

+
c2,2

(z − z2)2
+ · · ·+ c2,n2

(z − z2)n1

...

Pm(z) =
cm,1
z − zm

+
cm,2

(z − zm)2
+ · · ·+ cm,nm

(z − zm)nm

where the coefficients of the minus-first powers sum to zero,

c1,1 + · · ·+ cm,1 = 0.

These data might describe the principal parts of a meromorphic function on C/Λ
at its poles, since the residues of the putative function sum to zero.

The meromorphic function on C with the desired principal parts is

f(z) = c1,1ζ(z − z1) + c1,2℘(z − z1) + · · ·+ c1,n1
Fn1

(z − z1)

+ c2,1ζ(z − z2) + c2,2℘(z − z2) + · · ·+ c2,n2Fn2(z − z2)

...

+ cm,1ζ(z − zm) + cm,2℘(z − zm) + · · ·+ cm,nmFnm(z − zm).

More briefly, f(z) =
∑
i,j ci,jFj(z−zj) where now F1 = ζ and F2 = ℘. The question

is whether f is Λ-periodic. Since the Weierstrass ℘-function and its derivatives are
Λ-periodic, the question bears only on the subfunction

g(z) = c1,1ζ(z − z1) + · · ·+ cm,1ζ(z − zm) =

m∑
i=1

ci,1ζ(z − zi).

Compute for j = 1, 2 that

g(z + ωj) =

m∑
i=1

ci,1ζ(z − zi + ωj) =

m∑
i=1

ci,1(ζ(z − zi) + ηj) = g(z) + ηj

m∑
i=1

ci,1.

And thus g(z + ωj) = g(z) because
∑
i ci,1 = 0.
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2. The field of meromorphic functions on a complex torus

Let Λ be a lattice, and let ℘ be its associated Weierstrass function. We show that
the field of meromorphic functions on C/Λ—or, equivalently, the field of Λ-periodic
meromorphic functions on C—is as simple as it possibly could be: it is only the
field of rational functions in ℘ and ℘′,

C(℘, ℘′),

and in fact this field is

C(℘)[℘′] = {f(℘) + ℘′g(℘) : f, g rational functions}.

So up to isomorphism, the function field is generated by two transcendental quan-
tities over C that satisfy an algebraic relation,

C(x, y)/〈y2 = 4x3 − g2x− g3〉.

To establish the desired result, consider any meromorphic function f on C/Λ,
and introducing two resulting even functions,

f1(z) =
f(z) + f(−z)

2
, f2(z) =

f(z)− f(−z)
2℘′(z)

.

Then we have the decomposition

f(z) = f1(z) + ℘′(z)f2(z).

This reduces the problem to showing that the field of even meromorphic functions
on C/Λ is C(℘).

So now consider any even meromorphic function f on C/Λ, where Λ = ω1Z⊕ω2Z.
Its expansion about 0 is

f(z) =
∑

n≥ν0(f)

anz
n, z near 0,

and so all powers of z in this expansion are even. In particular, the vanishing order
ν0(f) is even. Similarly, the expansion of f about ω1/2 is

f(z) =
∑

n≥νω1/2(f)

bn(z − ω1

2 )n, z near 0.

Define a related meromorphic function on C/Λ,

g(z) = f(z + ω1

2 ).

To see that g is even because f is even and because ω1

2 is its own inverse in C/Λ,
compute

g(−z) = f(−z + ω1

2 ) = f(−z − ω1

2 + ω1) = f(−z − ω1

2 ) = f(z + ω1

2 ) = g(z).

Thus the order of g at 0 is even, as shown earlier in this paragraph. But the Laurent
expansion of g about 0 is

g(z) =
∑

n≥νω1/2(f)

bnz
n, z near 0.

Thus νω1/2(f) is even. Similarly, νω2/2(f) and ν(ω1+ω2)/2(f) are even.
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All points of C/Λ come in opposite pairs {±p}, other than (the cosets of) the
four points q = 0, ω1

2 ,
ω2

2 ,
ω1+ω2

2 . Given the even meromorphic function f on C/Λ,
consider the related function

ϕ(z) =
∏
p

(℘(z)− ℘(p))νp(f)
∏
q

(℘(z)− ℘(q))νq(f)/2.

The first product in the previous display chooses either point of each pair {±p}.
The function ϕ is a rational function in ℘. Because ℘ takes the values q to order 2,
the function ϕ has the same order of vanishing as f everywhere. Thus their quotient
is analytic and doubly periodic, making it constant, and so f is a rational function
in ℘ as well. This completes the argument.


