SKETCH OF FUNCTION THEORY ON COMPLEX TORI

In class we have shown that if $\Lambda \subset \mathbb{C}$ is a lattice and

$$
f: \mathbb{C} / \Lambda \longrightarrow \widehat{\mathbb{C}}
$$

is a nonzero meromorphic function then three necessary conditions follow from short contour integral calculations:
(1) $\sum_{c \in \mathbb{C} / \Lambda} \operatorname{res}_{c}(f)=0$. That is, the sum of the residues of f is zero. This condition rules out the possibility of a meromorphic function on \mathbb{C} / Λ having only one simple pole.
(2) $\sum_{c \in \mathbb{C} / \Lambda} \operatorname{ord}_{c}(f)=0$. That is, the net order of vanishing of f is zero. (Indeed, this holds with any compact Riemann surface in place of \mathbb{C} / Λ : triangulate the surface so that the triangle-sides avoid the finitely many zeros and poles of f; then the sum of the integrals of $f^{\prime}(z) / f(z)$ around all the triangles is zero by cancellation, but also it is the net order of vanishing.)
(3) $\sum_{c \in \mathbb{C} / \Lambda} \operatorname{ord}_{c}(f) \cdot c=0$ in \mathbb{C} / Λ. That is, the sum of the points where f has zeros and poles, each such point c summed as many times as f vanishes there, is zero under the group law of \mathbb{C} / Λ.
These conditions are also sufficient. Specifically, after introducing some buildingblock functions in the next section, this writeup constructs a Λ-periodic function with any feasible prescribed vanishing behavior, and also this writeup constructs a Λ-periodic function with any feasible prescribed principal parts.

The second part of this writeup shows that the field of meromorphic functions on a complex torus is the field of rational functions in the Weierstrass \wp-function and its derivative.

1. Constructions

1.1. Weierstrass's σ-function, ζ-function, and \wp-function. The Weierstrass σ-function,

$$
\sigma: \mathbb{C} \longrightarrow \mathbb{C}
$$

is

$$
\sigma(z)=z \prod_{\omega \in \Lambda}^{\prime}\left(1-\frac{z}{\omega}\right) e^{z / \omega+\frac{1}{2}(z / \omega)^{2}}
$$

Since this function has simple zeros at the two-dimensional lattice $\Lambda \subset \mathbb{C}$ just as the function $s(x)=\sin \pi x$ has simple zeros at the one-dimensional lattice $\mathbb{Z} \subset \mathbb{R}$, it is named σ by analogy.
(The exponential factors are needed to make the infinite product converge. A full explanation of this would take us too far afield, but the basic idea is that for the product to converge to a nonzero value, the value needs to be the exponential of the sum of the logarithms of the multiplicands. The relevant question becomes whether the sum

$$
\log z+\sum_{\omega \in \Lambda}^{\prime} \log \left((1-z / \omega) e^{z / \omega+\frac{1}{2}(z / \omega)^{2}}\right)
$$

converges absolutely and uniformly on compacta. And it does, because for small enough $|z|$ the logarithm of the product is the sum of the logarithms,

$$
\log \left((1-z / \omega) e^{z / \omega+\frac{1}{2}(z / \omega)^{2}}\right)=\log (1-z / \omega)+z / \omega+\frac{1}{2}(z / \omega)^{2}
$$

and the power series expansion of the logarithm is

$$
\log (1-z / w)=-z / \omega-\frac{1}{2}(z / \omega)^{2}-\frac{1}{3}(z / \omega)^{3}-\cdots
$$

Thus the summmand is $\mathcal{O}\left((z / \omega)^{3}\right)$. As discussed in class, this is small enough to make the sum converge nicely. Consequently the infinite product $\sigma(z)$ converges to a holomorphic function on \mathbb{C}. The theory of infinite products is covered in many texts. See, for example, Complex Functions by Jones and Singerman.)

The Weierstrass ζ-function,

$$
\zeta: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}
$$

emphatically is not the Euler-Riemann ζ-function, but instead is

$$
\zeta(z)=\log (\sigma(z))^{\prime}=\frac{\sigma^{\prime}(z)}{\sigma(z)}=\frac{1}{z}+\sum_{\omega \in \Lambda}^{\prime}\left(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega^{2}}\right)
$$

This function has simple poles with residue 1 at the lattice points, analogously to the logarithmic derivative $\pi \cot \pi x$ of $\sin \pi x$, but it isn't quite periodic with respect to Λ. However, let $\Lambda=\omega_{1} \mathbb{Z} \oplus \omega_{2} \mathbb{Z}$ where $\omega_{1} / \omega_{2} \in \mathcal{H}$. Since the Weierstrass \wp-function $\wp=-\zeta^{\prime}$ is Λ-periodic, the quantities

$$
\eta_{j}=\zeta\left(z+\omega_{j}\right)-\zeta(z), \quad j=1,2
$$

are independent of z, i.e., they are lattice constants. Now we have the transformation laws

$$
\zeta\left(z+\omega_{j}\right)=\zeta(z)+\eta_{j}, \quad j=1,2
$$

Consequently,

$$
\left(\log \left(\frac{\sigma\left(z+\omega_{j}\right)}{\sigma(z)}\right)\right)^{\prime}=\zeta\left(z+\omega_{j}\right)-\zeta(z)=\eta_{j}, \quad j=1,2
$$

and thus for some constant c,

$$
\log \left(\frac{\sigma\left(z+\omega_{j}\right)}{\sigma(z)}\right)=\eta_{j} z+c, \quad j=1,2
$$

or

$$
\sigma\left(z+\omega_{j}\right)=\sigma(z) e^{\eta_{j} z} e^{c}, \quad j=1,2
$$

To determine e^{c}, note that the definition of σ shows that σ is odd. Therefore, setting $z=-\omega_{j} / 2$ gives

$$
\sigma\left(\omega_{j} / 2\right)=-\sigma\left(\omega_{j} / 2\right) e^{-\eta_{j} \sigma_{j} / 2} e^{c}
$$

And so $e^{c}=-e^{\eta_{j} \sigma_{j} / 2}$, giving

$$
\sigma\left(z+\omega_{j}\right)=-\sigma(z) e^{\eta_{j}\left(z+\omega_{j} / 2\right)}, \quad j=1,2
$$

Incidentally, the lattice constants satisfy the Legendre relation,

$$
\eta_{2} \omega_{1}-\eta_{1} \omega_{2}=2 \pi i
$$

1.2. Constructing a function with specified vanishing. Now let n be a positive integer, and consider a set of data

$$
a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{C}
$$

where a_{1} through a_{n} can contain repeats, as can b_{1} through b_{n}, but no a_{i} and b_{j} are equal modulo the lattice Λ. Suppose further that

$$
\sum_{i} a_{i}-\sum_{i} b_{i} \in \Lambda
$$

This condition forces $n \geq 2$. We want to define a meromorphic function

$$
f: \mathbb{C} / \Lambda \longrightarrow \widehat{\mathbb{C}}
$$

with zeros at the a_{i}, the degree of each zero being the number of times that the corresponding a_{i} repeats, and similarly for poles at the b_{i}. Such a function will satisfy the second of our three necessary conditions, $\sum_{c} \operatorname{ord}_{c}(f)=0$, and also the third, $\sum_{c} \operatorname{ord}_{c}(f) \cdot c=0$ in \mathbb{C} / Λ.

Translating b_{n} by some lattice element $\lambda \in \Lambda$, which has no effect on the coset $b_{n}+\Lambda \in \mathbb{C} / \Lambda$, we may assume that in fact

$$
\sum_{i} a_{i}-\sum_{i} b_{i}=0
$$

Now consider the function

$$
f: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}, \quad f(z)=\frac{\prod_{i} \sigma\left(z-a_{i}\right)}{\prod_{i} \sigma\left(z-b_{i}\right)}
$$

This function is meromorphic, and it has the specified zeros and poles. The question is whether f is Λ-periodic. So compute for $j=1,2$ that

$$
\begin{aligned}
f\left(z+\omega_{j}\right) & =\frac{\prod_{i} \sigma\left(z-a_{i}+\omega_{j}\right)}{\prod_{i} \sigma\left(z-b_{i}+\omega_{j}\right)} \\
& =\frac{(-1)^{n} \prod_{i} \sigma\left(z-a_{i}\right) e^{\eta_{j}\left(z-a_{i}+\omega_{j} / 2\right)}}{(-1)^{n} \prod_{i} \sigma\left(z-b_{i}\right) e^{\eta_{j}\left(z-b_{i}+\omega_{j} / 2\right)}} \\
& =\frac{\prod_{i} \sigma\left(z-a_{i}\right)}{\prod_{i} \sigma\left(z-b_{i}\right)} \prod_{i} e^{\eta_{j}\left(b_{i}-a_{i}\right)} \\
& =\frac{\prod_{i} \sigma\left(z-a_{i}\right)}{\prod_{i} \sigma\left(z-b_{i}\right)} e^{\eta_{j} \sum_{i}\left(b_{i}-a_{i}\right)} \\
& =\frac{\prod_{i} \sigma\left(z-a_{i}\right)}{\prod_{i} \sigma\left(z-b_{i}\right)} \\
& =f(z)
\end{aligned}
$$

Thus f is indeed Λ-periodic, giving a meromorphic function on the torus with the specified zeros and poles.
1.3. Constructing a function with specified principal parts. Recall that the Weierstrass \wp-function,

$$
\wp: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}
$$

is

$$
\wp(z)=-\zeta^{\prime}(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda}^{\prime}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

Define also for each integer $k \geq 3$,

$$
F_{k}: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}, \quad F_{k}(z)=\sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^{k}}
$$

(Thus $F_{k}=(-1)^{k} \wp^{(k-2)} /(k-1)!$.) Recall that the Weierstrass ζ-function has simple poles with residue 1 at the lattice points $\omega \in \Lambda$. More specifically, its Laurent series at 0 is

$$
\zeta(z)=\frac{1}{z}+\text { holomorphic in } z
$$

Similarly, the Weierstrass \wp-function Laurent series has a double pole at 0 and Laurent series

$$
\wp(z)=\frac{1}{z^{2}}+\text { holomorphic in } z
$$

while for $k \geq 3$ the functions F_{k} have k-fold poles at 0 and Laurent series

$$
F_{k}(z)=\frac{1}{z^{k}}+\text { holomorphic in } z
$$

Now let z_{1} through z_{m} be distinct modulo Λ, and consider a set of principal part data

$$
\begin{aligned}
P_{1}(z) & =\frac{c_{1,1}}{z-z_{1}}+\frac{c_{1,2}}{\left(z-z_{1}\right)^{2}}+\cdots+\frac{c_{1, n_{1}}}{\left(z-z_{1}\right)^{n_{1}}} \\
P_{2}(z) & =\frac{c_{2,1}}{z-z_{2}}+\frac{c_{2,2}}{\left(z-z_{2}\right)^{2}}+\cdots+\frac{c_{2, n_{2}}}{\left(z-z_{2}\right)^{n_{1}}} \\
& \vdots \\
P_{m}(z) & =\frac{c_{m, 1}}{z-z_{m}}+\frac{c_{m, 2}}{\left(z-z_{m}\right)^{2}}+\cdots+\frac{c_{m, n_{m}}}{\left(z-z_{m}\right)^{n_{m}}}
\end{aligned}
$$

where the coefficients of the minus-first powers sum to zero,

$$
c_{1,1}+\cdots+c_{m, 1}=0
$$

These data might describe the principal parts of a meromorphic function on \mathbb{C} / Λ at its poles, since the residues of the putative function sum to zero.

The meromorphic function on \mathbb{C} with the desired principal parts is

$$
\begin{aligned}
f(z)= & c_{1,1} \zeta\left(z-z_{1}\right)+c_{1,2} \wp\left(z-z_{1}\right)+\cdots+c_{1, n_{1}} F_{n_{1}}\left(z-z_{1}\right) \\
& +c_{2,1} \zeta\left(z-z_{2}\right)+c_{2,2} \wp\left(z-z_{2}\right)+\cdots+c_{2, n_{2}} F_{n_{2}}\left(z-z_{2}\right) \\
& \vdots \\
& +c_{m, 1} \zeta\left(z-z_{m}\right)+c_{m, 2} \wp\left(z-z_{m}\right)+\cdots+c_{m, n_{m}} F_{n_{m}}\left(z-z_{m}\right) .
\end{aligned}
$$

More briefly, $f(z)=\sum_{i, j} c_{i, j} F_{j}\left(z-z_{j}\right)$ where now $F_{1}=\zeta$ and $F_{2}=\wp$. The question is whether f is Λ-periodic. Since the Weierstrass \wp-function and its derivatives are Λ-periodic, the question bears only on the subfunction

$$
g(z)=c_{1,1} \zeta\left(z-z_{1}\right)+\cdots+c_{m, 1} \zeta\left(z-z_{m}\right)=\sum_{i=1}^{m} c_{i, 1} \zeta\left(z-z_{i}\right)
$$

Compute for $j=1,2$ that

$$
g\left(z+\omega_{j}\right)=\sum_{i=1}^{m} c_{i, 1} \zeta\left(z-z_{i}+\omega_{j}\right)=\sum_{i=1}^{m} c_{i, 1}\left(\zeta\left(z-z_{i}\right)+\eta_{j}\right)=g(z)+\eta_{j} \sum_{i=1}^{m} c_{i, 1}
$$

And thus $g\left(z+\omega_{j}\right)=g(z)$ because $\sum_{i} c_{i, 1}=0$.

2. The field of meromorphic functions on a complex torus

Let Λ be a lattice, and let \wp be its associated Weierstrass function. We show that the field of meromorphic functions on \mathbb{C} / Λ-or, equivalently, the field of Λ-periodic meromorphic functions on \mathbb{C}-is as simple as it possibly could be: it is only the field of rational functions in \wp and \wp^{\prime},

$$
\mathbb{C}\left(\wp, \wp^{\prime}\right)
$$

and in fact this field is

$$
\mathbb{C}(\wp)\left[\wp^{\prime}\right]=\left\{f(\wp)+\wp^{\prime} g(\wp): f, g \text { rational functions }\right\}
$$

So up to isomorphism, the function field is generated by two transcendental quantities over \mathbb{C} that satisfy an algebraic relation,

$$
\mathbb{C}(x, y) /\left\langle y^{2}=4 x^{3}-g_{2} x-g_{3}\right\rangle
$$

To establish the desired result, consider any meromorphic function f on \mathbb{C} / Λ, and introducing two resulting even functions,

$$
f_{1}(z)=\frac{f(z)+f(-z)}{2}, \quad f_{2}(z)=\frac{f(z)-f(-z)}{2 \wp^{\prime}(z)}
$$

Then we have the decomposition

$$
f(z)=f_{1}(z)+\wp^{\prime}(z) f_{2}(z)
$$

This reduces the problem to showing that the field of even meromorphic functions on \mathbb{C} / Λ is $\mathbb{C}(\wp)$.

So now consider any even meromorphic function f on \mathbb{C} / Λ, where $\Lambda=\omega_{1} \mathbb{Z} \oplus \omega_{2} \mathbb{Z}$. Its expansion about 0 is

$$
f(z)=\sum_{n \geq \nu_{0}(f)} a_{n} z^{n}, \quad z \text { near } 0
$$

and so all powers of z in this expansion are even. In particular, the vanishing order $\nu_{0}(f)$ is even. Similarly, the expansion of f about $\omega_{1} / 2$ is

$$
f(z)=\sum_{n \geq \nu_{\omega_{1} / 2}(f)} b_{n}\left(z-\frac{\omega_{1}}{2}\right)^{n}, \quad z \text { near } 0
$$

Define a related meromorphic function on \mathbb{C} / Λ,

$$
g(z)=f\left(z+\frac{\omega_{1}}{2}\right)
$$

To see that g is even because f is even and because $\frac{\omega_{1}}{2}$ is its own inverse in \mathbb{C} / Λ, compute

$$
g(-z)=f\left(-z+\frac{\omega_{1}}{2}\right)=f\left(-z-\frac{\omega_{1}}{2}+\omega_{1}\right)=f\left(-z-\frac{\omega_{1}}{2}\right)=f\left(z+\frac{\omega_{1}}{2}\right)=g(z)
$$

Thus the order of g at 0 is even, as shown earlier in this paragraph. But the Laurent expansion of g about 0 is

$$
g(z)=\sum_{n \geq \nu_{\omega_{1} / 2}(f)} b_{n} z^{n}, \quad z \text { near } 0
$$

Thus $\nu_{\omega_{1} / 2}(f)$ is even. Similarly, $\nu_{\omega_{2} / 2}(f)$ and $\nu_{\left(\omega_{1}+\omega_{2}\right) / 2}(f)$ are even.

All points of \mathbb{C} / Λ come in opposite pairs $\{ \pm p\}$, other than (the cosets of) the four points $q=0, \frac{\omega_{1}}{2}, \frac{\omega_{2}}{2}, \frac{\omega_{1}+\omega_{2}}{2}$. Given the even meromorphic function f on \mathbb{C} / Λ, consider the related function

$$
\varphi(z)=\prod_{p}(\wp(z)-\wp(p))^{\nu_{p}(f)} \prod_{q}(\wp(z)-\wp(q))^{\nu_{q}(f) / 2} .
$$

The first product in the previous display chooses either point of each pair $\{ \pm p\}$. The function φ is a rational function in \wp. Because \wp takes the values q to order 2, the function φ has the same order of vanishing as f everywhere. Thus their quotient is analytic and doubly periodic, making it constant, and so f is a rational function in \wp as well. This completes the argument.

