
BEGINNING MODULAR FORMS

This writeup gives first examples of modular forms: Eisenstein series, the dis-
criminant, and the j-function.

1. Definitions

The modular group is the group of 2-by-2 matrices with integer entries and
determinant 1,

SL2(Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The modular group is generated by the two matrices[
1 1
0 1

]
and

[
0 −1
1 0

]
(Exercise 1). Each element of the modular group is also viewed as an automorphism
(invertible self-map) of the Riemann sphere Ĉ = C ∪ {∞}, the fractional linear
transformation [

a b
c d

]
(τ) =

aτ + b

cτ + d
, τ ∈ Ĉ.

This is understood to mean that if c 6= 0 then −d/c maps to∞ and∞ maps to a/c,
and if c = 0 then∞maps to∞. The identity matrix I and its negative −I both give
the identity transformation, and more generally each pair ±γ of matrices in SL2(Z)
gives a single transformation. The group of transformations defined by the modular
group is generated by the maps described by the two matrix generators,

τ 7→ τ + 1 and τ 7→ −1/τ.

The upper half plane is

H = {τ ∈ C : Im (τ) > 0}.
Readers with some background in Riemann surface theory—which is not necessary
to read this book—may recognize H as one of the three simply connected Riemann
surfaces, the other two being the plane C and the sphere Ĉ. The formula

Im (γ(τ)) =
Im (τ)
|cτ + d|2

, γ =
[
a b
c d

]
∈ SL2(Z)

(Exercise 2(a)) shows that if γ ∈ SL2(Z) and τ ∈ H then also γ(τ) ∈ H, i.e., the
modular group maps the upper half plane back to itself. In fact the modular group
acts on the upper half plane, meaning that I(τ) = τ where I is the identity matrix
(as was already noted) and (γγ′)(τ) = γ(γ′(τ)) for all γ, γ′ ∈ SL2(Z) and τ ∈ H.
This last formula is easy to check (Exercise 2(b)).

Definition 1.1. Let k be an integer. A meromorphic function f : H −→ C is
weakly modular of weight k if

f(γ(τ)) = (cτ + d)kf(τ) for γ =
[
a b
c d

]
∈ SL2(Z) and τ ∈ H.
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An argument shows that if this transformation law holds when γ is each of the
generators [ 1 1

0 1 ] and
[

0 −1
1 0

]
then it holds for all γ ∈ SL2(Z). In other words, f is

weakly modular of weight k if

f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ).

Weak modularity of weight 0 is simply SL2(Z)-invariance, f ◦ γ = f for all
γ ∈ SL2(Z). Weak modularity of weight 2 is also natural: complex analysis relies
on path integrals of differentials f(τ)dτ , and SL2(Z)-invariant path integration on
the upper half plane requires such differentials to be invariant when τ is replaced
by any γ(τ). But (Exercise 2(c))

dγ(τ) = (cτ + d)−2dτ,

and so the relation f(γ(τ))d(γ(τ)) = f(τ)dτ is

f(γ(τ)) = (cτ + d)2f(τ),

giving Definition 1.1 with weight k = 2. Weight 2 will play an especially important
role later in this book since it is the weight of the modular form in the Modular-
ity Theorem. The weight 2 case also leads inexorably to higher even weights—
multiplying two weakly modular functions of weight 2 gives a weakly modular
function of weight 4, and so on. Letting γ = −I in Definition 1.1 gives f = (−1)kf ,
showing that the only weakly modular function of any odd weight k is the zero
function, but nonzero odd weight examples exist in more general contexts to be
developed soon. Another motivating idea for weak modularity is that while it does
not make a function f fully SL2(Z)-invariant, at least f(τ) and f(γ(τ)) always have
the same zeros and poles since the factor cτ + d on H has neither.

Modular forms are weakly modular functions that are also holomorphic on the
upper half plane and holomorphic at ∞. To define this last notion, recall that
SL2(Z) contains the translation matrix[

1 1
0 1

]
: τ 7→ τ + 1,

for which the factor cτ + d is simply 1, so that f(τ + 1) = f(τ) for every weakly
modular function f : H −→ C. That is, weakly modular functions are Z-periodic.
Let D = {q ∈ C : |q| < 1} be the open complex unit disk, let D′ = D \ {0}, and
recall from complex analysis that the Z-periodic holomorphic map τ 7→ e2πiτ = q
takes H to D′. Thus, corresponding to f , the function g : D′ −→ C where g(q) =
f(log(q)/(2πi)) is well defined even though the logarithm is only determined up
to 2πiZ, and f(τ) = g(e2πiτ ). If f is holomorphic on the upper half plane then
the composition g is holomorphic on the punctured disk since the logarithm can
be defined holomorphically about each point, and so g has a Laurent expansion
g(q) =

∑
n∈Z anq

n for q ∈ D′. The relation |q| = e−2πIm(τ) shows that q → 0 as
Im (τ)→∞. So, thinking of ∞ as lying far in the imaginary direction, define f to
be holomorphic at ∞ if g extends holomorphically to the puncture point q = 0, i.e.,
the Laurent series sums over n ∈ N. This means that f has a Fourier expansion

f(τ) =
∞∑
n=0

an(f)qn, q = e2πiτ .

Since q → 0 if and only if Im (τ) → ∞, showing that a weakly modular holo-
morphic function f : H −→ C is holomorphic at ∞ doesn’t require computing its
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Fourier expansion, only showing that limIm(τ)→∞ f(τ) exists or even just that f(τ)
is bounded as Im (τ)→∞.

Definition 1.2. Let k be an integer. A function f : H −→ C is a modular form
of weight k if

(1) f is holomorphic on H,
(2) f is weakly modular of weight k,
(3) f is holomorphic at ∞.

The set of modular forms of weight k is denoted Mk(SL2(Z)).

It is easy to check thatMk(SL2(Z)) forms a vector space over C (Exercise 3(a)).
Holomorphy at ∞ will make the dimension of this space, and of more spaces of
modular forms to be defined in the next section, finite. When f is holomorphic
at ∞ it is tempting to define f(∞) = g(0) = a0, but the next section will show
that this doesn’t work in a more general context.

The product of a modular form of weight k with a modular form of weight l is
a modular form of weight k + l (Exercise 3(b)). Thus the sum

M(SL2(Z)) =
⊕
k∈Z
Mk(SL2(Z))

forms a ring, a so-called graded ring because of its structure as a sum.

2. Examples

The zero function on H is a modular form of every weight, and every constant
function on H is a modular form of weight 0. For nontrivial examples of modular
forms, let k > 2 be an even integer and define the Eisenstein series of weight k to
be a 2-dimensional analog of the Riemann zeta function ζ(k) =

∑∞
d=1 1/dk,

Gk(τ) =
∑
(c,d)

′ 1
(cτ + d)k

, τ ∈ H,

where the primed summation sign means to sum over nonzero integer pairs (c, d) ∈
Z2\{(0, 0)}. The sum is absolutely convergent and converges uniformly on compact
subsets of H (Exercise 4(c)), so Gk is holomorphic on H and its terms may be
rearranged. For any γ =

[
a b
c d

]
∈ SL2(Z), compute that

Gk(γ(τ)) =
∑
(c′,d′)

′ 1(
c′
(
aτ+b
cτ+d

)
+ d′

)k
= (cτ + d)k

∑
(c′,d′)

′ 1
((c′a+ d′c)τ + (c′b+ d′d))k

.

But as (c′, d′) runs through Z2 \{(0, 0)}, so does (c′a+d′c, c′b+d′d) = (c′, d′)
[
a b
c d

]
(Exercise 4(d)), and so the right side is (cτ + d)kGk(τ), showing that Gk is weakly
modular of weight k. Finally, Gk is bounded as Im (τ) → ∞ (Exercise 4(e)), so it
is a modular form.

To compute the Fourier series for Gk, continue to let τ ∈ H and begin with the
identities

(1)
1
τ

+
∞∑
d=1

(
1

τ − d
+

1
τ + d

)
= π cotπτ = πi− 2πi

∞∑
m=0

qm, q = e2πiτ
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(Exercise 5—the reader who is unhappy with this unmotivated invocation of un-
familiar expressions for a trigonometric function should be reassured that it is a
standard rite of passage into modular forms; but also, Exercise 6 provides other
proofs, perhaps more natural, of the following formula (2)). Differentiating (1)
k − 1 times with respect to τ gives for τ ∈ H and q = e2πiτ ,

(2)
∑
d∈Z

1
(τ + d)k

=
(−2πi)k

(k − 1)!

∞∑
m=1

mk−1qm, k ≥ 2.

For even k > 2, ∑
(c,d)

′ 1
(cτ + d)k

=
∑
d6=0

1
dk

+ 2
∞∑
c=1

(∑
d∈Z

1
(cτ + d)k

)
,

so again letting ζ denote the Riemann zeta function and using (2) gives∑
(c,d)

′ 1
(cτ + d)k

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
c=1

∞∑
m=1

mk−1qcm.

Rearranging the last expression gives the Fourier expansion

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn, k > 2, k even

where the coefficient σk−1(n) is the arithmetic function

σk−1(n) =
∑
m|n
m>0

mk−1.

Exercise 7(b) shows that dividing by the leading coefficient gives a series having
rational coefficients with a common denominator. This normalized Eisenstein series
Gk(τ)/(2ζ(k)) is denoted Ek(τ). The Riemann zeta function will be discussed
further in another handout.

Since the set of modular forms is a graded ring, we can make modular forms
out of various sums of products of the Eisenstein series. For example,M8(SL2(Z))
turns out to be 1-dimensional. The functions E4(τ)2 and E8(τ) both belong to this
space, making them equal up to a scalar multiple and therefore equal since both
have leading term 1. Expanding out the relation E2

4 = E8 gives a relation between
the divisor-sum functions σ3 and σ7 (Exercise 7(c)),

(3) σ7(n) = σ3(n) + 120
n−1∑
i=1

σ3(i)σ3(n− i), n ≥ 1.

The modular forms that, unlike Eisenstein series, have constant term equal to 0
play an important role in the subject.

Definition 2.1. A cusp form of weight k is a modular form of weight k whose
Fourier expansion has leading coefficient a0 = 0, i.e.,

f(τ) =
∞∑
n=1

anq
n, q = e2πiτ .

The set of cusp forms is denoted Sk(SL2(Z)).
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So a modular form is a cusp form when limIm(τ)→∞ f(τ) = 0. The limit point∞
of H is called the cusp of SL2(Z) for geometric reasons that take a bit of work to
explain. and a cusp form can be viewed as vanishing at the cusp. The cusp forms
Sk(SL2(Z)) form a vector subspace of the modular forms Mk(SL2(Z)), and the
graded ring

S(SL2(Z)) =
⊕
k∈Z
Sk(SL)2(Z)

is an ideal in M(SL2(Z)) (Exercise 3(c)).
For an example of a cusp form, let

g2(τ) = 60G4(τ), g3(τ) = 140G6(τ),

and define the discriminant function

∆ : H −→ C, ∆(τ) = (g2(τ))3 − 27(g3(τ))2.

Then ∆ is weakly modular of weight 12 and holomorphic on H, and a0 = 0, a1 =
(2π)12 in the Fourier expansion of ∆ (Exercise 7(d)). So indeed ∆ ∈ S12(SL2(Z)),
and ∆ is not the zero function. Another writeup will show that in fact ∆(τ) 6= 0
for all τ ∈ H so that the only zero of ∆ is at ∞.

It follows that the modular function

j : H −→ C, j(τ) = 1728
(g2(τ))3

∆(τ)

is holomorphic on H. Since the numerator and denominator of j have the same
weight, j is SL2(Z)-invariant,

j(γ(τ)) = j(τ), γ ∈ SL2(Z), τ ∈ H,

and in fact it is also called the modular invariant. The expansion

j(τ) =
(2π)12 + · · ·
(2π)12q + · · ·

=
1
q

+ · · ·

shows that j has a simple pole at ∞ (and is normalized to have residue 1 at the
pole), so it is not quite a modular form. Let ζ3 denote the complex cube root of
unity e2πi/3. Easy calculations (Exercise 8) show that g3(i) = 0 so that g2(i) 6= 0
and j(i) = 1728, and g2(ζ3) = 0 so that g3(ζ3) 6= 0 and j(ζ3) = 0. One can further
show that

g2(i) = 4$4
4, $4 = 2

∫ 1

0

dt√
1− t4

= 2
√
π

Γ(5/4)
Γ(3/4)

and

g3(ζ3) = (27/16)$6
3, $3 = 2

∫ 1

0

dt√
1− t3

= 2
√
π

Γ(4/3)
Γ(5/6)

.

Here the integrals are elliptic integrals, and Γ is Euler’s gamma function, to be
defined in a separate handout. Finally, Exercise 9 shows that the j-function surjects
from H to C.
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Exercises.

(1) Let Γ be the subgroup of SL2(Z) generated by the two matrices [ 1 1
0 1 ] and[

0 −1
1 0

]
. Note that [ 1 n

0 1 ] = [ 1 1
0 1 ]n ∈ Γ for all n ∈ Z. Let α =

[
a b
c d

]
be a

matrix in SL2(Z). Use the identity[
a b
c d

] [
1 n
0 1

]
=
[
a b′

c nc+ d

]
to show that unless c = 0, some matrix αγ with γ ∈ Γ has bottom row
(c, d′) with |d′| ≤ |c|/2. Use the identity[

a b
c d

] [
0 −1
1 0

]
=
[
b −a
d −c

]
to show that this process can be iterated until some matrix αγ with γ ∈ Γ
has bottom row (0, ∗). Show that in fact the bottom row is (0,±1), and
since

[
0 −1
1 0

]2
= −I it can be taken to be (0, 1). Show that therefore αγ ∈ Γ

and so α ∈ Γ. Thus Γ is all of SL2(Z).
(2) (a) Show that Im (γ(τ)) = Im (τ) /|cτ + d|2 for all γ =

[
a b
c d

]
∈ SL2(Z).

(b) Show that (γγ′)(τ) = γ(γ′(τ)) for all γ, γ′ ∈ SL2(Z) and τ ∈ H.
(c) Show that dγ(τ)/dτ = 1/(cτ + d)2 for γ =

[
a b
c d

]
∈ SL2(Z).

(3) (a) Show that the set Mk(SL2(Z)) of modular forms of weight k forms a
vector space over C.

(b) If f is a modular form of weight k and g is a modular form of weight l,
show that fg is a modular form of weight k + l.

(c) Show that Sk(SL)2(Z) is a vector subspace of Mk(SL2(Z)) and that
S(SL2(Z)) is an ideal in M(SL2(Z)).

(4) Let k ≥ 3 be an integer and let L′ = Z2 \ {(0, 0)}.
(a) Show that the series

∑
(c,d)∈L′(sup{|c|, |d|})−k converges by consid-

ering the partial sums over expanding squares.
(b) Fix positive numbers A and B and let

Ω = {τ ∈ H : |Re (τ) | ≤ A, Im (τ) ≥ B}.

Prove that there is a constant C > 0 such that |τ + δ| > C sup{1, |δ|} for
all τ ∈ Ω and δ ∈ R.

(c) Use parts (a) and (b) to prove that the series defining Gk(τ) converges
absolutely and uniformly for τ ∈ Ω. Conclude that Gk is holomorphic onH.

(d) Show that for γ ∈ SL2(Z), right multiplication by γ defines a bijection
from L′ to L′.

(e) Use the calculation from (c) to show that Gk is bounded on Ω. From
the text and part (d), Gk is weakly modular so in particular Gk(τ + 1) =
Gk(τ). Show that therefore Gk(τ) is bounded as Im (τ)→∞.

(5) Establish the two formulas for π cotπτ in (1).
(6) This exercise obtains formula (2) without using the cotangent. Let f(τ) =∑

d∈Z 1/(τ + d)k for k ≥ 2 and τ ∈ H. Since f is holomorphic (by the
method of Exercise 4) and Z-periodic and since limIm(τ)→∞ f(τ) = 0, there
is a Fourier expansion f(τ) =

∑∞
m=1 amq

m = g(q) as in the section, where
q = e2πiτ and

am =
1

2πi

∫
γ

g(q)
qm+1

dq
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is a path integral once counterclockwise over a circle about 0 in the punc-
tured disk D′.

(a) Show that

am =
∫ 1+iy

τ=0+iy

f(τ)e−2πimτdτ =
∫ +∞+iy

τ=−∞+iy

τ−ke−2πimτdτ for any y > 0.

(b) Let gm(τ) = τ−ke−2πimτ , a meromorphic function on C with its only
singularity at the origin. Show that

−2πiResτ=0gm(τ) =
(−2πi)k

(k − 1)!
mk−1.

(c) Establish (2) by integrating gm(τ) clockwise about a large rectangular
path and applying the Residue Theorem. Argue that the integral along the
top side goes to am and the integrals along the other three sides go to 0.

(d) Let h : R −→ C be a function such that the integral
∫∞
−∞ |h(x)|dx

is finite and the sum
∑
d∈Z h(x+ d) converges absolutely and uniformly on

compact subsets and is infinitely differentiable. Then the Poisson summa-
tion formula says that∑

d∈Z
h(x+ d) =

∑
m∈Z

ĥ(m)e2πimx

where ĥ is the Fourier transform of h,

ĥ(x) =
∫ ∞
t=−∞

h(t)e−2πixtdt.

We will not prove this, but the idea is that the left side sum symmetrizes h to
a function of period 1 and the right side sum is the Fourier series of the left
side since themth Fourier coefficient is

∫ 1

t=0

∑
d∈Z h(t+d)e−2πimtdt = ĥ(m).

Letting h(x) = 1/τk where τ = x + iy with y > 0, show that h meets the
conditions for Poisson summation. Show that ĥ(m) = e−2πmyam with am
from above for m > 0, and that ĥ(m) = 0 for m ≤ 0. Establish formula (2)
again, this time as a special case of Poisson summation. We will see more
Poisson summation and Fourier analysis in connection with Eisenstein series
in another handout.

(7) The Bernoulli numbers Bk are defined by the formal power series expansion

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

Thus they are calculable in succession by matching coefficients in the power
series identity

t = (et − 1)
∞∑
k=0

Bk
tk

k!
=
∞∑
n=1

(
n−1∑
k=0

(
n

k

)
Bk

)
tn

n!

(i.e., the nth parenthesized sum is 1 if n = 1 and 0 otherwise) and they are
rational. Since the expression

t

et − 1
+
t

2
=
t

2
· e

t + 1
et − 1
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is even, it follows that B1 = −1/2 and Bk = 0 for all other odd k. The
Bernoulli numbers will be motivated, discussed, and generalized in another
handout.

(a) Show that B2 = 1/6, B4 = −1/30, and B6 = 1/42.
(b) Use the expressions for π cotπτ from the section to show

1− 2
∞∑
k=1

ζ(2k)τ2k = πτ cotπτ = πiτ +
∞∑
k=0

Bk
(2πiτ)k

k!
.

Use these to show that for k ≥ 2 even, the Riemann zeta function satisfies

2ζ(k) = − (2πi)k

k!
Bk,

so in particular ζ(2) = π2/6, ζ(4) = π4/90, and ζ(6) = π6/945. Also, this
shows that the normalized Eisenstein series of weight k

Ek(τ) =
Gk(τ)
2ζ(k)

= 1− 2k
Bk

∞∑
n=1

σk−1(n)qn

has rational coefficients with a common denominator.
(c) Equate coefficients in the relation E8(τ) = E4(τ)2 to establish for-

mula (3).
(d) Show that a0 = 0 and a1 = (2π)12 in the Fourier expansion of the

discriminant function ∆ from the text.
(8) Recall that ζ3 denotes the complex cube root of unity e2πi/3. Show that[

0 −1
1 0

]
(ζ3) = ζ3 + 1 so that by periodicity g2(

[
0 −1
1 0

]
(ζ3)) = g2(ζ3). Show

that by modularity also g2(
[

0 −1
1 0

]
(ζ3)) = ζ4

3g2(ζ3) and therefore g2(ζ3) = 0.
Conclude that g3(ζ3) 6= 0 and j(ζ3) = 0. Argue similarly to show that
g3(i) = 0, g2(i) 6= 0, and j(i) = 1728.

(9) This exercise shows that the modular invariant j : H −→ C is a surjection.
Suppose that c ∈ C and j(τ) 6= c for all τ ∈ H. Consider the integral

1
2πi

∫
γ

j′(τ)dτ
j(τ)− c

where γ is the contour containing an arc of the unit circle from (−1+i
√

3)/2
to (1 + i

√
3)/2, two vertical segments up to any height greater than 1, and

a horizontal segment. By the Argument Principle the integral is 0. Use the
fact that j is invariant under [ 1 1

0 1 ] to show that the integrals over the two
vertical segments cancel. Use the fact that j is invariant under

[
0 −1
1 0

]
to

show that the integrals over the two halves of the circular arc cancel. For
the integral over the remaining piece of γ make the change of coordinates
q = e2πiτ , remembering that j′(τ) denotes derivative with respect to τ and
that j(τ) = 1/q + · · · , and compute that it equals 1. This contradiction
shows that j(τ) = c for some τ ∈ H and j surjects.


