BEGINNING MODULAR FORMS

This writeup gives first examples of modular forms: Eisenstein series, the discriminant, and the j-function.

1. Definitions

The modular group is the group of 2-by-2 matrices with integer entries and determinant 1 ,

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{Z}, a d-b c=1\right\} .
$$

The modular group is generated by the two matrices

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(Exercise 1). Each element of the modular group is also viewed as an automorphism (invertible self-map) of the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, the fractional linear transformation

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](\tau)=\frac{a \tau+b}{c \tau+d}, \quad \tau \in \widehat{\mathbb{C}} .
$$

This is understood to mean that if $c \neq 0$ then $-d / c$ maps to ∞ and ∞ maps to a / c, and if $c=0$ then ∞ maps to ∞. The identity matrix I and its negative $-I$ both give the identity transformation, and more generally each pair $\pm \gamma$ of matrices in $\mathrm{SL}_{2}(\mathbb{Z})$ gives a single transformation. The group of transformations defined by the modular group is generated by the maps described by the two matrix generators,

$$
\tau \mapsto \tau+1 \quad \text { and } \quad \tau \mapsto-1 / \tau
$$

The upper half plane is

$$
\mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}
$$

Readers with some background in Riemann surface theory-which is not necessary to read this book - may recognize \mathcal{H} as one of the three simply connected Riemann surfaces, the other two being the plane \mathbb{C} and the sphere $\widehat{\mathbb{C}}$. The formula

$$
\operatorname{Im}(\gamma(\tau))=\frac{\operatorname{Im}(\tau)}{|c \tau+d|^{2}}, \quad \gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})
$$

(Exercise 2(a)) shows that if $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$ then also $\gamma(\tau) \in \mathcal{H}$, i.e., the modular group maps the upper half plane back to itself. In fact the modular group acts on the upper half plane, meaning that $I(\tau)=\tau$ where I is the identity matrix (as was already noted) and $\left(\gamma \gamma^{\prime}\right)(\tau)=\gamma\left(\gamma^{\prime}(\tau)\right)$ for all $\gamma, \gamma^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$. This last formula is easy to check (Exercise 2(b)).
Definition 1.1. Let k be an integer. A meromorphic function $f: \mathcal{H} \longrightarrow \mathbb{C}$ is weakly modular of weight k if

$$
f(\gamma(\tau))=(c \tau+d)^{k} f(\tau) \quad \text { for } \gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) \text { and } \tau \in \mathcal{H}
$$

An argument shows that if this transformation law holds when γ is each of the generators $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ then it holds for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. In other words, f is weakly modular of weight k if

$$
f(\tau+1)=f(\tau) \quad \text { and } \quad f(-1 / \tau)=\tau^{k} f(\tau)
$$

Weak modularity of weight 0 is simply $\mathrm{SL}_{2}(\mathbb{Z})$-invariance, $f \circ \gamma=f$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. Weak modularity of weight 2 is also natural: complex analysis relies on path integrals of differentials $f(\tau) d \tau$, and $\mathrm{SL}_{2}(\mathbb{Z})$-invariant path integration on the upper half plane requires such differentials to be invariant when τ is replaced by any $\gamma(\tau)$. But (Exercise 2(c))

$$
d \gamma(\tau)=(c \tau+d)^{-2} d \tau
$$

and so the relation $f(\gamma(\tau)) d(\gamma(\tau))=f(\tau) d \tau$ is

$$
f(\gamma(\tau))=(c \tau+d)^{2} f(\tau)
$$

giving Definition 1.1 with weight $k=2$. Weight 2 will play an especially important role later in this book since it is the weight of the modular form in the Modularity Theorem. The weight 2 case also leads inexorably to higher even weightsmultiplying two weakly modular functions of weight 2 gives a weakly modular function of weight 4 , and so on. Letting $\gamma=-I$ in Definition 1.1 gives $f=(-1)^{k} f$, showing that the only weakly modular function of any odd weight k is the zero function, but nonzero odd weight examples exist in more general contexts to be developed soon. Another motivating idea for weak modularity is that while it does not make a function f fully $\mathrm{SL}_{2}(\mathbb{Z})$-invariant, at least $f(\tau)$ and $f(\gamma(\tau))$ always have the same zeros and poles since the factor $c \tau+d$ on \mathcal{H} has neither.

Modular forms are weakly modular functions that are also holomorphic on the upper half plane and holomorphic at ∞. To define this last notion, recall that $\mathrm{SL}_{2}(\mathbb{Z})$ contains the translation matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]: \tau \mapsto \tau+1
$$

for which the factor $c \tau+d$ is simply 1 , so that $f(\tau+1)=f(\tau)$ for every weakly modular function $f: \mathcal{H} \longrightarrow \mathbb{C}$. That is, weakly modular functions are \mathbb{Z}-periodic. Let $D=\{q \in \mathbb{C}:|q|<1\}$ be the open complex unit disk, let $D^{\prime}=D \backslash\{0\}$, and recall from complex analysis that the \mathbb{Z}-periodic holomorphic map $\tau \mapsto e^{2 \pi i \tau}=q$ takes \mathcal{H} to D^{\prime}. Thus, corresponding to f, the function $g: D^{\prime} \longrightarrow \mathbb{C}$ where $g(q)=$ $f(\log (q) /(2 \pi i))$ is well defined even though the logarithm is only determined up to $2 \pi i \mathbb{Z}$, and $f(\tau)=g\left(e^{2 \pi i \tau}\right)$. If f is holomorphic on the upper half plane then the composition g is holomorphic on the punctured disk since the logarithm can be defined holomorphically about each point, and so g has a Laurent expansion $g(q)=\sum_{n \in \mathbb{Z}} a_{n} q^{n}$ for $q \in D^{\prime}$. The relation $|q|=e^{-2 \pi \operatorname{Im}(\tau)}$ shows that $q \rightarrow 0$ as $\operatorname{Im}(\tau) \rightarrow \infty$. So, thinking of ∞ as lying far in the imaginary direction, define f to be holomorphic at ∞ if g extends holomorphically to the puncture point $q=0$, i.e., the Laurent series sums over $n \in \mathbb{N}$. This means that f has a Fourier expansion

$$
f(\tau)=\sum_{n=0}^{\infty} a_{n}(f) q^{n}, \quad q=e^{2 \pi i \tau}
$$

Since $q \rightarrow 0$ if and only if $\operatorname{Im}(\tau) \rightarrow \infty$, showing that a weakly modular holomorphic function $f: \mathcal{H} \longrightarrow \mathbb{C}$ is holomorphic at ∞ doesn't require computing its

Fourier expansion, only showing that $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} f(\tau)$ exists or even just that $f(\tau)$ is bounded as $\operatorname{Im}(\tau) \rightarrow \infty$.
Definition 1.2. Let k be an integer. A function $f: \mathcal{H} \longrightarrow \mathbb{C}$ is a modular form of weight k if
(1) f is holomorphic on \mathcal{H},
(2) f is weakly modular of weight k,
(3) f is holomorphic at ∞.

The set of modular forms of weight k is denoted $\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.
It is easy to check that $\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ forms a vector space over \mathbb{C} (Exercise $3(\mathrm{a})$). Holomorphy at ∞ will make the dimension of this space, and of more spaces of modular forms to be defined in the next section, finite. When f is holomorphic at ∞ it is tempting to define $f(\infty)=g(0)=a_{0}$, but the next section will show that this doesn't work in a more general context.

The product of a modular form of weight k with a modular form of weight l is a modular form of weight $k+l$ (Exercise 3(b)). Thus the sum

$$
\mathcal{M}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\bigoplus_{k \in \mathbb{Z}} \mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)
$$

forms a ring, a so-called graded ring because of its structure as a sum.

2. Examples

The zero function on \mathcal{H} is a modular form of every weight, and every constant function on \mathcal{H} is a modular form of weight 0 . For nontrivial examples of modular forms, let $k>2$ be an even integer and define the Eisenstein series of weight k to be a 2 -dimensional analog of the Riemann zeta function $\zeta(k)=\sum_{d=1}^{\infty} 1 / d^{k}$,

$$
G_{k}(\tau)=\sum_{(c, d)}^{\prime} \frac{1}{(c \tau+d)^{k}}, \quad \tau \in \mathcal{H}
$$

where the primed summation sign means to sum over nonzero integer pairs $(c, d) \in$ $\mathbb{Z}^{2} \backslash\{(0,0)\}$. The sum is absolutely convergent and converges uniformly on compact subsets of \mathcal{H} (Exercise $4(\mathrm{c})$), so G_{k} is holomorphic on \mathcal{H} and its terms may be rearranged. For any $\gamma=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$, compute that

$$
\begin{aligned}
G_{k}(\gamma(\tau)) & =\sum_{\left(c^{\prime}, d^{\prime}\right)}^{\prime} \frac{1}{\left(c^{\prime}\left(\frac{a \tau+b}{c \tau+d}\right)+d^{\prime}\right)^{k}} \\
& =(c \tau+d)^{k} \sum_{\left(c^{\prime}, d^{\prime}\right)}^{\prime} \frac{1}{\left(\left(c^{\prime} a+d^{\prime} c\right) \tau+\left(c^{\prime} b+d^{\prime} d\right)\right)^{k}}
\end{aligned}
$$

But as $\left(c^{\prime}, d^{\prime}\right)$ runs through $\mathbb{Z}^{2} \backslash\{(0,0)\}$, so does $\left(c^{\prime} a+d^{\prime} c, c^{\prime} b+d^{\prime} d\right)=\left(c^{\prime}, d^{\prime}\right)\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ (Exercise $4(\mathrm{~d})$), and so the right side is $(c \tau+d)^{k} G_{k}(\tau)$, showing that G_{k} is weakly modular of weight k. Finally, G_{k} is bounded as $\operatorname{Im}(\tau) \rightarrow \infty$ (Exercise $4(\mathrm{e})$), so it is a modular form.

To compute the Fourier series for G_{k}, continue to let $\tau \in \mathcal{H}$ and begin with the identities

$$
\begin{equation*}
\frac{1}{\tau}+\sum_{d=1}^{\infty}\left(\frac{1}{\tau-d}+\frac{1}{\tau+d}\right)=\pi \cot \pi \tau=\pi i-2 \pi i \sum_{m=0}^{\infty} q^{m}, \quad q=e^{2 \pi i \tau} \tag{1}
\end{equation*}
$$

(Exercise 5-the reader who is unhappy with this unmotivated invocation of unfamiliar expressions for a trigonometric function should be reassured that it is a standard rite of passage into modular forms; but also, Exercise 6 provides other proofs, perhaps more natural, of the following formula (2)). Differentiating (1) $k-1$ times with respect to τ gives for $\tau \in \mathcal{H}$ and $q=e^{2 \pi i \tau}$,

$$
\begin{equation*}
\sum_{d \in \mathbb{Z}} \frac{1}{(\tau+d)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} q^{m}, \quad k \geq 2 \tag{2}
\end{equation*}
$$

For even $k>2$,

$$
\sum_{(c, d)}^{\prime} \frac{1}{(c \tau+d)^{k}}=\sum_{d \neq 0} \frac{1}{d^{k}}+2 \sum_{c=1}^{\infty}\left(\sum_{d \in \mathbb{Z}} \frac{1}{(c \tau+d)^{k}}\right)
$$

so again letting ζ denote the Riemann zeta function and using (2) gives

$$
\sum_{(c, d)}^{\prime} \frac{1}{(c \tau+d)^{k}}=2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{c=1}^{\infty} \sum_{m=1}^{\infty} m^{k-1} q^{c m}
$$

Rearranging the last expression gives the Fourier expansion

$$
G_{k}(\tau)=2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}, \quad k>2, k \text { even }
$$

where the coefficient $\sigma_{k-1}(n)$ is the arithmetic function

$$
\sigma_{k-1}(n)=\sum_{\substack{m \mid n \\ m>0}} m^{k-1}
$$

Exercise 7(b) shows that dividing by the leading coefficient gives a series having rational coefficients with a common denominator. This normalized Eisenstein series $G_{k}(\tau) /(2 \zeta(k))$ is denoted $E_{k}(\tau)$. The Riemann zeta function will be discussed further in another handout.

Since the set of modular forms is a graded ring, we can make modular forms out of various sums of products of the Eisenstein series. For example, $\mathcal{M}_{8}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ turns out to be 1-dimensional. The functions $E_{4}(\tau)^{2}$ and $E_{8}(\tau)$ both belong to this space, making them equal up to a scalar multiple and therefore equal since both have leading term 1. Expanding out the relation $E_{4}^{2}=E_{8}$ gives a relation between the divisor-sum functions σ_{3} and σ_{7} (Exercise 7(c)),

$$
\begin{equation*}
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{i=1}^{n-1} \sigma_{3}(i) \sigma_{3}(n-i), \quad n \geq 1 \tag{3}
\end{equation*}
$$

The modular forms that, unlike Eisenstein series, have constant term equal to 0 play an important role in the subject.

Definition 2.1. A cusp form of weight k is a modular form of weight k whose Fourier expansion has leading coefficient $a_{0}=0$, i.e.,

$$
f(\tau)=\sum_{n=1}^{\infty} a_{n} q^{n}, \quad q=e^{2 \pi i \tau}
$$

The set of cusp forms is denoted $\mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.

So a modular form is a cusp form when $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} f(\tau)=0$. The limit point ∞ of \mathcal{H} is called the cusp of $\mathrm{SL}_{2}(\mathbb{Z})$ for geometric reasons that take a bit of work to explain. and a cusp form can be viewed as vanishing at the cusp. The cusp forms $\mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ form a vector subspace of the modular forms $\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, and the graded ring

$$
\mathcal{S}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\bigoplus_{k \in \mathbb{Z}} \mathcal{S}_{k}(\mathrm{SL})_{2}(\mathbb{Z})
$$

is an ideal in $\mathcal{M}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ (Exercise 3(c)).
For an example of a cusp form, let

$$
g_{2}(\tau)=60 G_{4}(\tau), \quad g_{3}(\tau)=140 G_{6}(\tau)
$$

and define the discriminant function

$$
\Delta: \mathcal{H} \longrightarrow \mathbb{C}, \quad \Delta(\tau)=\left(g_{2}(\tau)\right)^{3}-27\left(g_{3}(\tau)\right)^{2}
$$

Then Δ is weakly modular of weight 12 and holomorphic on \mathcal{H}, and $a_{0}=0, a_{1}=$ $(2 \pi)^{12}$ in the Fourier expansion of Δ (Exercise $\left.7(\mathrm{~d})\right)$. So indeed $\Delta \in \mathcal{S}_{12}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, and Δ is not the zero function. Another writeup will show that in fact $\Delta(\tau) \neq 0$ for all $\tau \in \mathcal{H}$ so that the only zero of Δ is at ∞.

It follows that the modular function

$$
j: \mathcal{H} \longrightarrow \mathbb{C}, \quad j(\tau)=1728 \frac{\left(g_{2}(\tau)\right)^{3}}{\Delta(\tau)}
$$

is holomorphic on \mathcal{H}. Since the numerator and denominator of j have the same weight, j is $\mathrm{SL}_{2}(\mathbb{Z})$-invariant,

$$
j(\gamma(\tau))=j(\tau), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z}), \tau \in \mathcal{H}
$$

and in fact it is also called the modular invariant. The expansion

$$
j(\tau)=\frac{(2 \pi)^{12}+\cdots}{(2 \pi)^{12} q+\cdots}=\frac{1}{q}+\cdots
$$

shows that j has a simple pole at ∞ (and is normalized to have residue 1 at the pole), so it is not quite a modular form. Let ζ_{3} denote the complex cube root of unity $e^{2 \pi i / 3}$. Easy calculations (Exercise 8) show that $g_{3}(i)=0$ so that $g_{2}(i) \neq 0$ and $j(i)=1728$, and $g_{2}\left(\zeta_{3}\right)=0$ so that $g_{3}\left(\zeta_{3}\right) \neq 0$ and $j\left(\zeta_{3}\right)=0$. One can further show that

$$
g_{2}(i)=4 \varpi_{4}^{4}, \quad \varpi_{4}=2 \int_{0}^{1} \frac{d t}{\sqrt{1-t^{4}}}=2 \sqrt{\pi} \frac{\Gamma(5 / 4)}{\Gamma(3 / 4)}
$$

and

$$
g_{3}\left(\zeta_{3}\right)=(27 / 16) \varpi_{3}^{6}, \quad \varpi_{3}=2 \int_{0}^{1} \frac{d t}{\sqrt{1-t^{3}}}=2 \sqrt{\pi} \frac{\Gamma(4 / 3)}{\Gamma(5 / 6)}
$$

Here the integrals are elliptic integrals, and Γ is Euler's gamma function, to be defined in a separate handout. Finally, Exercise 9 shows that the j-function surjects from \mathcal{H} to \mathbb{C}.

Exercises.

(1) Let Γ be the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ generated by the two matrices $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{n} \in \Gamma$ for all $n \in \mathbb{Z}$. Let $\alpha=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$ be a matrix in $\mathrm{SL}_{2}(\mathbb{Z})$. Use the identity

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a & b^{\prime} \\
c & n c+d
\end{array}\right]
$$

to show that unless $c=0$, some matrix $\alpha \gamma$ with $\gamma \in \Gamma$ has bottom row $\left(c, d^{\prime}\right)$ with $\left|d^{\prime}\right| \leq|c| / 2$. Use the identity

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
b & -a \\
d & -c
\end{array}\right]
$$

to show that this process can be iterated until some matrix $\alpha \gamma$ with $\gamma \in \Gamma$ has bottom row $(0, *)$. Show that in fact the bottom row is $(0, \pm 1)$, and since $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]^{2}=-I$ it can be taken to be $(0,1)$. Show that therefore $\alpha \gamma \in \Gamma$ and so $\alpha \in \Gamma$. Thus Γ is all of $\mathrm{SL}_{2}(\mathbb{Z})$.
(2) (a) Show that $\operatorname{Im}(\gamma(\tau))=\operatorname{Im}(\tau) /|c \tau+d|^{2}$ for all $\gamma=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in \operatorname{SL}_{2}(\mathbb{Z})$.
(b) Show that $\left(\gamma \gamma^{\prime}\right)(\tau)=\gamma\left(\gamma^{\prime}(\tau)\right)$ for all $\gamma, \gamma^{\prime} \in \operatorname{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$.
(c) Show that $d \gamma(\tau) / d \tau=1 /(c \tau+d)^{2}$ for $\gamma=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$.
(3) (a) Show that the set $\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ of modular forms of weight k forms a vector space over \mathbb{C}.
(b) If f is a modular form of weight k and g is a modular form of weight l, show that $f g$ is a modular form of weight $k+l$.
(c) Show that $\mathcal{S}_{k}(\mathrm{SL})_{2}(\mathbb{Z})$ is a vector subspace of $\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ and that $\mathcal{S}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is an ideal in $\mathcal{M}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$.
(4) Let $k \geq 3$ be an integer and let $L^{\prime}=\mathbb{Z}^{2} \backslash\{(0,0)\}$.
(a) Show that the series $\sum_{(c, d) \in L^{\prime}}(\sup \{|c|,|d|\})^{-k}$ converges by considering the partial sums over expanding squares.
(b) Fix positive numbers A and B and let

$$
\Omega=\{\tau \in \mathcal{H}:|\operatorname{Re}(\tau)| \leq A, \operatorname{Im}(\tau) \geq B\}
$$

Prove that there is a constant $C>0$ such that $|\tau+\delta|>C \sup \{1,|\delta|\}$ for all $\tau \in \Omega$ and $\delta \in \mathbb{R}$.
(c) Use parts (a) and (b) to prove that the series defining $G_{k}(\tau)$ converges absolutely and uniformly for $\tau \in \Omega$. Conclude that G_{k} is holomorphic on \mathcal{H}.
(d) Show that for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, right multiplication by γ defines a bijection from L^{\prime} to L^{\prime}.
(e) Use the calculation from (c) to show that G_{k} is bounded on Ω. From the text and part (d), G_{k} is weakly modular so in particular $G_{k}(\tau+1)=$ $G_{k}(\tau)$. Show that therefore $G_{k}(\tau)$ is bounded as $\operatorname{Im}(\tau) \rightarrow \infty$.
(5) Establish the two formulas for $\pi \cot \pi \tau$ in (1).
(6) This exercise obtains formula (2) without using the cotangent. Let $f(\tau)=$ $\sum_{d \in \mathbb{Z}} 1 /(\tau+d)^{k}$ for $k \geq 2$ and $\tau \in \mathcal{H}$. Since f is holomorphic (by the method of Exercise 4) and \mathbb{Z}-periodic and since $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} f(\tau)=0$, there is a Fourier expansion $f(\tau)=\sum_{m=1}^{\infty} a_{m} q^{m}=g(q)$ as in the section, where $q=e^{2 \pi i \tau}$ and

$$
a_{m}=\frac{1}{2 \pi i} \int_{\gamma} \frac{g(q)}{q^{m+1}} d q
$$

is a path integral once counterclockwise over a circle about 0 in the punctured disk D^{\prime}.
(a) Show that
$a_{m}=\int_{\tau=0+i y}^{1+i y} f(\tau) e^{-2 \pi i m \tau} d \tau=\int_{\tau=-\infty+i y}^{+\infty+i y} \tau^{-k} e^{-2 \pi i m \tau} d \tau \quad$ for any $y>0$.
(b) Let $g_{m}(\tau)=\tau^{-k} e^{-2 \pi i m \tau}$, a meromorphic function on \mathbb{C} with its only singularity at the origin. Show that

$$
-2 \pi i \operatorname{Res}_{\tau=0} g_{m}(\tau)=\frac{(-2 \pi i)^{k}}{(k-1)!} m^{k-1}
$$

(c) Establish (2) by integrating $g_{m}(\tau)$ clockwise about a large rectangular path and applying the Residue Theorem. Argue that the integral along the top side goes to a_{m} and the integrals along the other three sides go to 0 .
(d) Let $h: \mathbb{R} \longrightarrow \mathbb{C}$ be a function such that the integral $\int_{-\infty}^{\infty}|h(x)| d x$ is finite and the sum $\sum_{d \in \mathbb{Z}} h(x+d)$ converges absolutely and uniformly on compact subsets and is infinitely differentiable. Then the Poisson summation formula says that

$$
\sum_{d \in \mathbb{Z}} h(x+d)=\sum_{m \in \mathbb{Z}} \hat{h}(m) e^{2 \pi i m x}
$$

where \hat{h} is the Fourier transform of h,

$$
\hat{h}(x)=\int_{t=-\infty}^{\infty} h(t) e^{-2 \pi i x t} d t
$$

We will not prove this, but the idea is that the left side sum symmetrizes h to a function of period 1 and the right side sum is the Fourier series of the left side since the m th Fourier coefficient is $\int_{t=0}^{1} \sum_{d \in \mathbb{Z}} h(t+d) e^{-2 \pi i m t} d t=\hat{h}(m)$. Letting $h(x)=1 / \tau^{k}$ where $\tau=x+i y$ with $y>0$, show that h meets the conditions for Poisson summation. Show that $\hat{h}(m)=e^{-2 \pi m y} a_{m}$ with a_{m} from above for $m>0$, and that $\hat{h}(m)=0$ for $m \leq 0$. Establish formula (2) again, this time as a special case of Poisson summation. We will see more Poisson summation and Fourier analysis in connection with Eisenstein series in another handout.
(7) The Bernoulli numbers B_{k} are defined by the formal power series expansion

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}
$$

Thus they are calculable in succession by matching coefficients in the power series identity

$$
t=\left(e^{t}-1\right) \sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1}\binom{n}{k} B_{k}\right) \frac{t^{n}}{n!}
$$

(i.e., the nth parenthesized sum is 1 if $n=1$ and 0 otherwise) and they are rational. Since the expression

$$
\frac{t}{e^{t}-1}+\frac{t}{2}=\frac{t}{2} \cdot \frac{e^{t}+1}{e^{t}-1}
$$

is even, it follows that $B_{1}=-1 / 2$ and $B_{k}=0$ for all other odd k. The Bernoulli numbers will be motivated, discussed, and generalized in another handout.
(a) Show that $B_{2}=1 / 6, B_{4}=-1 / 30$, and $B_{6}=1 / 42$.
(b) Use the expressions for $\pi \cot \pi \tau$ from the section to show

$$
1-2 \sum_{k=1}^{\infty} \zeta(2 k) \tau^{2 k}=\pi \tau \cot \pi \tau=\pi i \tau+\sum_{k=0}^{\infty} B_{k} \frac{(2 \pi i \tau)^{k}}{k!} .
$$

Use these to show that for $k \geq 2$ even, the Riemann zeta function satisfies

$$
2 \zeta(k)=-\frac{(2 \pi i)^{k}}{k!} B_{k}
$$

so in particular $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90$, and $\zeta(6)=\pi^{6} / 945$. Also, this shows that the normalized Eisenstein series of weight k

$$
E_{k}(\tau)=\frac{G_{k}(\tau)}{2 \zeta(k)}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

has rational coefficients with a common denominator.
(c) Equate coefficients in the relation $E_{8}(\tau)=E_{4}(\tau)^{2}$ to establish formula (3).
(d) Show that $a_{0}=0$ and $a_{1}=(2 \pi)^{12}$ in the Fourier expansion of the discriminant function Δ from the text.
(8) Recall that ζ_{3} denotes the complex cube root of unity $e^{2 \pi i / 3}$. Show that $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left(\zeta_{3}\right)=\zeta_{3}+1$ so that by periodicity $g_{2}\left(\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left(\zeta_{3}\right)\right)=g_{2}\left(\zeta_{3}\right)$. Show that by modularity also $g_{2}\left(\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left(\zeta_{3}\right)\right)=\zeta_{3}^{4} g_{2}\left(\zeta_{3}\right)$ and therefore $g_{2}\left(\zeta_{3}\right)=0$. Conclude that $g_{3}\left(\zeta_{3}\right) \neq 0$ and $j\left(\zeta_{3}\right)=0$. Argue similarly to show that $g_{3}(i)=0, g_{2}(i) \neq 0$, and $j(i)=1728$.
(9) This exercise shows that the modular invariant $j: \mathcal{H} \longrightarrow \mathbb{C}$ is a surjection. Suppose that $c \in \mathbb{C}$ and $j(\tau) \neq c$ for all $\tau \in \mathcal{H}$. Consider the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{j^{\prime}(\tau) d \tau}{j(\tau)-c}
$$

where γ is the contour containing an arc of the unit circle from $(-1+i \sqrt{3}) / 2$ to $(1+i \sqrt{3}) / 2$, two vertical segments up to any height greater than 1 , and a horizontal segment. By the Argument Principle the integral is 0 . Use the fact that j is invariant under $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ to show that the integrals over the two vertical segments cancel. Use the fact that j is invariant under $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ to show that the integrals over the two halves of the circular arc cancel. For the integral over the remaining piece of γ make the change of coordinates $q=e^{2 \pi i \tau}$, remembering that $j^{\prime}(\tau)$ denotes derivative with respect to τ and that $j(\tau)=1 / q+\cdots$, and compute that it equals 1 . This contradiction shows that $j(\tau)=c$ for some $\tau \in \mathcal{H}$ and j surjects.

