
DIRICHLET’S PROBLEM ON THE DISK

Let D denote the unit disk, and let D denote its closure. Dirichlet’s Problem is:
Given a bounded, piecewise continuous function on the boundary of the disk,

u : ∂D −→ R,

is there a harmonic function on the disk,

u : D −→ R,

that extends to match the original u on the boundary of the disk, the extension being
continuous other than the original discontinuities?

This problem is readily solved with the techniques of complex analysis. On a
simply connected domain, a harmonic function u and an analytic function f are
essentially the same thing via the formula

f = u+ iv, v a harmonic conjugate of u.

Combining this with Cauchy’s integral formula for analytic functions f gives Pois-
son’s integral formula for harmonic functions u, expressing the values of u on a disk
entirely in terms of the values of u on the boundary circle. Then the idea is to turn
Poisson’s formula around and use it to define the values of u on the disk in terms
of the values on the circle. That is, like many mathematical arguments, we show
that a set of conditions is sufficient for some purpose by first assuming whatever we
want them to imply, then deriving necessary consequences therefrom, and finally
using these consequences to argue that the given conditions are indeed sufficient,
as we wanted them to be.

With this outline in mind, start by assuming that we have a harmonic function

u : D −→ R,

even though our eventual goal is to find one. More precisely, u is defined on an
open superset Ω of D, u is twice continuously differentiable, and the Laplacian of u
is zero. We may take Ω to be simply connected. A harmonic conjugate of u is

v : Ω −→ R, v(z) =

∫ z

0

(ux dy − uy dx),

and the corresponding complex-valued function built from u and v is analytic,

f : Ω −→ C, f = u+ iv.

By Cauchy’s integral formula,

f(0) =
1

2πi

∫
|ζ|=1

f(ζ) dζ

ζ
.

Note that dζ
iζ = d(arg ζ) as ζ traverses the circle. Thus, taking the real part in the

previous display gives the mean value property of harmonic functions,

u(0) =
1

2π

∫
|ζ|=1

u(ζ) d(arg ζ) =
1

2π

∫
|ζ|=1

u(ζ)
dζ

iζ
.
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This formula is not particular to the unit disk: the value of a harmonic function at
any point is the average of its values over any circle about the point, so long as the
circle and its interior lie in the domain of the function.

(Also, the mean value property of harmonic functions does not depend on com-
plex analysis despite our use of complex analysis to derive it. Instead one can define
the symmetrization of u with respect to angle,

w : D −→ R, w(z) =
1

2π

∫ 2π

θ=0

u(zeiθ) dθ.

Since r2urr + rur + uθθ = 0, it follows that r2wrr + rwr = 0. Standard differential
equation techniques show that w(r) = a+ b log r. But w is bounded near 0, so w is
constant, and the constant must be u(0).)

We want a similar integral formula for values u(z) for all z ∈ D, not just z = 0.
The idea is to move z to 0 and keep track of how this affects the mean value formula
that we already have. For any z ∈ D, recall the standard automorphism of D that
moves z to 0, the fractional linear transformation

Tz =

[
1 −z
−z 1

]
: ζ 7−→ ζ − z

1− zζ
.

The composition u ◦ T−1z is again harmonic, and

u(z) = (u ◦ T−1z )(0).

Thus, by the mean value property of harmonic functions,

u(z) =
1

2π

∫
|ζ|=1

u(T−1z ζ)
dζ

iζ
=

1

2π

∫
|ξ|=1

u(ξ)
dTzξ

i Tzξ
.

In general, the derivative of a fractional linear transformation is[
a b
c d

]′
(ξ) =

ad− bc
(cξ + d)2

,

[
a b
c d

]
∈ GL2(C).

It follows by a short calculation that

dTzξ

i Tzξ
=

1− |z|2

|ξ − z|2
dξ

iξ
.

That is, letting ξ = eiθ, so that dξ
iξ = dθ,

u(z) =
1

2π

∫ 2π

θ=0

u(eiθ)
1− |z|2

|eiθ − z|2
dθ.

This is Poisson’s formula. Also it can be written

u(z) =
1

2π

∫ 2π

θ=0

u(eiθ) Re

(
eiθ + z

eiθ − z

)
dθ ,

and by the Law of Cosines it is further (with z = rze
iθz )

u(rze
iθz ) =

1

2π

∫ 2π

θ=0

u(eiθ)
1− r2z

1− 2rz cos(θ − θz) + r2z
dθ.

The quantity against which u(eiθ) is being integrated, which has the three expres-
sions shown here, is the Poisson kernel . That is,

u(z) =
1

2π

∫ 2π

θ=0

u(eiθ)Kz(θ) dθ ,
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where

Kz(θ) =
1− |z|2

|eiθ − z|2
= Re

(
eiθ + z

eiθ − z

)
=

1− r2z
1− 2rz cos(θ − θz) + r2z

.

Poisson’s formula has the pleasing physical interpretation that the value u(z) for z
in the disk is determined by the values of u(eiθ) for eiθ on the circle according to
an inverse square law weighting. Note that in particular, letting u be identically 1
gives

(1)
1

2π

∫ 2π

θ=0

Kz(θ) dθ = 1, z ∈ D.

We will refer back to this formula soon.
Poisson’s formula holds under the weaker hypotheses that u is harmonic on the

open disk D and continuous on the closed disk D. To see this, consider any r such
that 0 < r < 1, and let D1/r be the open disk about 0 of radius 1/r, an open
superset of D. Scaling D1/r by r gives D, where u is harmonic, so define

ur : D1/r −→ R, ur(z) = u(rz).

Then ur is defined and harmonic on D1/r, and hence it meets the conditions for
Poisson’s formula. That is,

ur(z) =
1

2π

∫ 2π

θ=0

ur(e
iθ)Kz(θ) dθ, z ∈ D,

or

u(rz) =
1

2π

∫ 2π

θ=0

u(reiθ)
1− |z|2

|eiθ − z|2
dθ, z ∈ D.

Now let r → 1 to obtain Poisson’s formula as before. Passing the limit through the
integral is justified as usual by continuity, compactness, and uniformity.

Next, the plan is to turn all of this around. Given a bounded, piecewise contin-
uous function

u : ∂D −→ R,
use Poisson’s formula to define a function

Pu : D −→ R
where

Pu(z) =
1

2π

∫ 2π

θ=0

u(eiθ)Kz(θ) dθ.

Because Kz(θ) = Re
(
eiθ+z
eiθ−z

)
, Pu is the real part of the analytic function

f(z) =
1

2πi

∫
|ξ|=1

u(ξ)
ξ + z

ξ − z
dξ

ξ
,

and so Pu is harmonic.
The question is whether Pu extends continuously to the original function on the

boundary of the disk, i.e., whether it is true that

lim
z→eiθ0

Pu(z) = u(eiθ0).

The answer, due to Schwarz, is that at points eiθ0 where u is continuous, it does.
To see this, first observe some general properties of the functional

u 7−→ Pu.
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These are

• (Linearity) Pu1+u2 = Pu1 + Pu2 and Pcu = cPu.
• (Positivity) If u ≥ 0 on ∂D then Pu ≥ 0 on D.
• (Preservation of identity) P1 = 1.
• (Preservation of bounds) If m ≤ u ≤M on ∂D then m ≤ Pu ≤M on D.

The first two are straightforward to show, because integration is linear and the
Poisson kernel is positive. The preservation of identity is already in place as the
Note that in particular formula (1) above. And the preservation of bounds is a
consequence of the previous properties.

With these in hand, it is easy to prove Schwarz’s Theorem. We may assume that
θ0 = 0 (i.e., eiθ0 = 1) and that u(1) = 0. The idea is to break the integral Pu(z)
into pieces, each of which is small for its own reasons as z → 1, so that indeed
limz→1 Pu(z) = 0.

Let ε > 0 be given. Since u is continuous at 1, there is an arc C1 of ∂D about 1
on which |u| < ε/2. Let C2 = ∂D−C1, and note that u decomposes as u = u1 +u2
where

u1 =

{
u on C1,

0 on C2,
u2 =

{
0 on C1,

u on C2.

Then |Pu1
| < ε/2 since |u1| < ε/2. Meanwhile, Pu2

is an integral over C2. But the
Poisson kernel grows small uniformly on C2 as z → 1, so eventually |Pu2

(z)| < ε/2
as well. Since Pu = Pu1 + Pu2 , this completes the proof.


