
GEOMETRY OF THE CAUCHY–RIEMANN EQUATIONS

The usual picture-explanations given to interpret the divergence and the curl are
not entirely satisfying. Working with the polar coordinate system further quantifies
the ideas and makes them more coherent by applying to both operators in the same
way. In the process, the Cauchy–Riemann equations emerge with no reference to
complex analysis.

Let A ⊂ R
2 be an open set that contains the origin, and let F be a continuous

vector field on A that is stationary at the origin,

F = (F1, F2) : A −→ R
2, F (0) = 0.

(Rather than study the divergence and the curl of a vector field F at a general
point p, we have normalized p to be 0 by prepending a translation of the domain,
and since the divergence and the curl are differential operators and hence insensitive
to constants, we also may normalize F (0) to 0 by postpending a translation of the
range.) At any point other than the origin, F resolves into a radial component and
an angular component. Specifically,

F = Fr + Fθ,

where

Fr = fr r̂, fr = F · r̂, r̂ = (cos θ, sin θ) = (x, y)/|(x, y)|,

Fθ = fθ θ̂, fθ = F · θ̂, θ̂ = r̂× = (− sin θ, cos θ) = (−y, x)/|(x, y)|.

(The unary cross product (x, y)× = (−y, x) in R
2 rotates vectors 90 degrees coun-

terclockwise.) Here fr is positive if Fr points outward and negative if Fr points
inward, and fθ is positive if Fθ points counterclockwise and negative if Fθ points
clockwise. Since F (0) = 0, the resolution of F into radial and angular components
extends continuously to the origin, fr(0) = fθ(0) = 0, so that Fr(0) = Fθ(0) = 0

even though r̂ and θ̂ are undefined at the origin.
The goal of this writeup is to express the divergence and the curl of F at the

origin in terms of the polar coordinate system derivatives that seem naturally suited
to describe them, the radial derivative of the (scalar) radial component of F ,

Drfr(0) = lim
r→0+

fr(r cos θ, r sin θ)

r
,

and the radial derivative of the (scalar) angular component of F ,

Drfθ(0) = lim
r→0+

fθ(r cos θ, r sin θ)

r
.

However, matters aren’t as simple as one might hope. If the (vector) radial and an-
gular components Fr and Fθ are differentiable at the origin then so is their sum F ,
but the converse is not true. So first we need sufficient conditions for the con-
verse, i.e., sufficient conditions for the components to be differentiable. Necessary
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conditions are always easier to find, so Proposition 1 will do so, and then Proposi-
tion 2 will show that the necessary conditions are also sufficient. The conditions in
question are the Cauchy–Riemann equations,

D1F1(0) = D2F2(0),

D1F2(0) = −D2F1(0).

When the Cauchy–Riemann equations hold, we can describe the divergence and
the curl of F at the origin in polar terms, as desired. This will be the content of
Theorem 3.

Before we proceed to the details, a brief geometric discussion of the Cauchy–
Riemann equations may be helpful. The equation D1F1 = D2F2 describes the
left side of figure 1, in which the radial component of F on the horizontal axis is
growing at the same rate as the radial component on the vertical axis. Similarly,
the equation D2F1 = −D1F2 describes the right side of the figure, in which the
angular component on the vertical axis is growing at the same rate as the angular
component on the horizontal axis. Combined with differentiability at the origin,
these two conditions will imply that moving outward in any direction, the radial
component of F is growing at the same rate as it is on the axes, and similarly for
the angular component. Thus the two limits that define the radial derivatives of
the radial and angular components of F at 0 (these were displayed in the previous
paragraph) are independent of θ. An example of this situation, with radial and
angular components both present, is shown in figure 2. From the perspective of
complex analysis, we recognize the figure as a depiction of the function f(z) = reiθz
for some fixed r and θ.

Figure 1. Geometry of the Cauchy–Riemann equations individually

As mentioned, the necessity of the Cauchy–Riemann equations is the natural
starting point.

Proposition 1: Polar Differentiability Implies Differentiability and the

Cauchy–Riemann Equations. Let A ⊂ R
2 be an open set that contains the

origin, and let F be a continuous vector field on A that is stationary at the origin,

F = (F1, F2) : A −→ R
2, F (0) = 0.
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Figure 2. Geometry of the Cauchy–Riemann equations together

Assume that the radial and angular components Fr and Fθ of F are differentiable

at the origin. Then F is differentiable at the origin, and the Cauchy–Riemann

equations hold at the origin.

For example, the vector field F (x, y) = (x, 0) is differentiable at the origin, but
since D1F1(0) = 1 and D2F2(0) = 0, it does not satisfy the Cauchy–Riemann
equations, and so the derivatives of the radial and angular components of F at the
origin do not exist.

Proof. As already noted, the differentiability of F at the origin is immediate since
F = Fr + Fθ and the sum of differentiable mappings is again differentiable. We
need to establish the Cauchy–Riemann equations.

The radial component Fr is stationary at the origin, and we are given that it is
differentiable at the origin. By the componentwise nature of differentiability, the
first component Fr,1 of Fr is differentiable at the origin, and so necessarily both
partial derivatives of Fr,1 exist at 0. Since Fr,1 vanishes on the y-axis, the second
partial derivative is 0. Thus the differentiability criterion for the first component
of Fr is

Fr,1(h, k)− hD1Fr,1(0) = o(h, k).

To further study the condition in the previous display, use the formula

Fr(x, y) =

{

fr(x,y)
|(x,y)| (x, y) if (x, y) 6= 0,

0 if (x, y) = 0

to substitute h fr(h, k)/|(h, k)| for Fr,1(h, k). Also, because Fθ is angular, Fθ,1

vanishes on the x-axis, and so D1Fθ,1(0) = 0; thus, since f1 = Fr,1 + Fθ,1, we may
substitute D1f1(0) for D1Fr,1(0) as well. Altogether the condition becomes

h(fr(h, k)/|(x, y)| −D1f1(0)) = o(h, k).

A similar argument using the second component Fr,2 of Fr shows that

k(fr(h, k)/|(x, y)| −D2f2(0)) = o(h, k).

And so we have shown the first Cauchy–Riemann equation and a little more,

lim
(h,k)→0

fr(h, k)

|(h, k)|
= D1f1(0) = D2f2(0).
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For the second Cauchy–Riemann equation we could essentially repeat the argu-
ment just given, but a quicker way is to consider the radial component of the vector

field −F× = fθ r̂ − fr θ̂,

(−F×)r(x, y) =

{

fθ(x,y)
|(x,y)| (x, y) if (x, y) 6= 0,

0 if (x, y) = 0.

This radial component is differentiable at the origin since it is a rotation of the
angular component of the original F , which we are given to be differentiable at the
origin. And −F× = (f2,−f1) in Cartesian coordinates, so as just argued,

lim
(h,k)→0

fθ(h, k)

|(h, k)|
= D1f2(0) = −D2f1(0).

This last display encompasses the second Cauchy–Riemann equation at the origin.
Note that the argument has used the full strength of the hypotheses, i.e., it has

used the differentiability at the origin of each component function of Fr and each
component function of Fθ. �

Also as mentioned, the converse to Proposition 1 holds too.

Proposition 2: Differentiability and the Cauchy–Riemann Equations

Imply Polar Differentiability. Let A ⊂ R
2 be an open set that contains the

origin, and let F be a continuous vector field on A that is stationary at the origin,

F = (F1, F2) : A −→ R
2, F (0) = 0.

Assume that F is differentiable at the origin, and assume that the Cauchy–Riemann

equations hold at the origin. Then the radial and angular components Fr and Fθ

are differentiable at the origin.

Proof. Let a = D1f1(0) and let b = D1f2(0). By the Cauchy–Riemann equations,
also a = D2f2(0) and b = −D2f1(0), so that the Jacobian matrix of F at 0 is

F ′(0) =

[

a −b
b a

]

.

The condition that F is differentiable at 0 is

F (h, k)− (ah− bk, bh+ ak) = o(h, k).

Decompose the quantity in the previous display into radial and angular components,

F (h, k)− (ah− bk, bh+ ak) =
(

Fr(h, k)− a(h, k)
)

+
(

Fθ(h, k)− b(−k, h)
)

.

Since the components are at most as long as the vector,

Fr(h, k)− a(h, k) = o(h, k) and Fθ(h, k)− b(−k, h) = o(h, k).

That is, Fr and Fθ are differentiable at the origin with respective Jacobian matrices

F ′
r(0) =

[

a 0
0 a

]

and F ′
θ(0) =

[

0 −b
b 0

]

.

This completes the proof. �
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Now we can return to the divergence and the curl.

Theorem 3: Divergence and Curl in Polar Coordinates. Let A ⊂ R
2 be

a region of R2 containing the origin, and let F be a continuous vector field on A
that is stationary at the origin,

F = (F1, F2) : A −→ R
2, F (0) = 0.

Assume that F is differentiable at the origin and that the Cauchy–Riemann equa-

tions hold at the origin. Then the radial derivatives of the radial and angular

components of F at the origin,

Drfr(0) = lim
r→0+

fr(r cos θ, r sin θ)

r

and

Drfθ(0) = lim
r→0+

fθ(r cos θ, r sin θ)

r
,

both exist independently of how θ behaves as r shrinks to 0. Furthermore, the

divergence of F at the origin is twice the radial derivative of the radial component,

(divF )(0) = 2Drfr(0),

and the curl of F at the origin is twice the radial derivative of the angular compo-

nent,

(curlF )(0) = 2Drfθ(0).

Proof. By Proposition 1, the angular and radial components of F are differentiable
at the origin, so that the hypotheses of Proposition 2 are met. The first limit in
the statement of the theorem was calculated in the proof of Proposition 1.

Drfr(0) = lim
(x,y)→0

fr(x, y)

|(x, y)|
= D1F1(0) = D2F2(0).

This makes the formula for the divergence immediate,

(divF )(0) = D1F1(0) +D2F2(0) = 2Drfr(0).

Similarly,

Drfθ(0) = lim
(x,y)→0

fθ(x, y)

|(x, y)|
= D1F2(0) = −D2F1(0),

so that

(curlF )(0) = D1F2(0)−D2F1(0) = 2Drfθ(0).

�

If F is a velocity field then the limit in the formula

(curlF )(0) = 2 lim
r→0+

fθ(r cos θ, r sin θ)

r

has the interpretation of the angular velocity of F at the origin. That is, when the
Cauchy–Riemann equations hold,

the curl is twice the angular velocity.
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Indeed, the angular velocity ω away from the origin is by definition the rate of
increase of the polar angle θ with the motion of F . This is not the counterclockwise
component fθ, but rather ω = fθ/r. To understand this, think of a uniformly
spinning disk such as a phonograph record on a turntable. At each point except
the center, the angular velocity is the same. But the speed of motion is not constant
over the disk, it is the angular velocity times the distance from the center. That is,
the angular velocity is the speed divided by the radius, as claimed. In these terms,
the proof showed that the angular velocity ω extends continuously to 0, and that
(curlF )(0) is twice the extended value ω(0).

Also, if F is a velocity field then the right side of the formula

(divF )(0) = 2 lim
r→0+

fr(r cos θ, r sin θ)

r

has the interpretation of the flux density of F at the origin. That is, when the
Cauchy–Riemann equations hold,

the divergence is the flux density.

To understand this, think of a planar region of incompressible fluid about the origin,
and let r be a positive number small enough that the fluid fills the area inside the
circle of radius r. Suppose that new fluid being added throughout the interior of
the circle, at rate c per unit of area. Thus fluid is being added to the area inside
the circle at total rate πr2c. Here c is called the flux density over the circle and it
is is measured in reciprocal time units, while the units of πr2c are area over time.
Since the fluid is incompressible, πr2c is also the rate at which fluid is passing
normally outward through the circle. And since the circle has circumference 2πr,
fluid is therefore passing normally outward through each point of the circle with
radial velocity

fr(r cos θ, r sin θ) =
πr2c

2πr
=

rc

2
.

Consequently,

2
fr(r cos θ, r sin θ)

r
= c.

Now let r shrink to 0. The left side of the display goes to the divergence of F at 0,
and the right side becomes the continuous extension to radius 0 of the flux density
over the circle of radius r. That is, the divergence is the flux density when fluid is
being added at a single point.


