FORMS OF THE CAUCHY-RIEMANN EQUATIONS

Let Ω be a region in \mathbb{C}, and let $f: \Omega \longrightarrow \mathbb{C}$ be a function. View points of the domain Ω either as vectors $z=(x, y)$ or as complex numbers $z=x+i y$. View f either as a vector-valued function $f=(u, v)$ or as a complex-valued function $f=u+i v$. The Cauchy-Riemann equations take the following four forms:

- Input and output in coordinates, viewing f as complex-valued $(z=x+i y$, $f(z)=u(x, y)+i v(x, y))$:

$$
u_{x}=v_{y} \quad \text { and } \quad v_{x}=-u_{y},
$$

in which case the derivative of f has four equivalent forms,

$$
f^{\prime}=u_{x}+i v_{x}=u_{x}-i u_{y}=v_{y}+i v_{x}=v_{y}-i u_{y}
$$

- Input and output in coordinates, viewing f as vector-valued $(z=(x, y)$, $f(z)=(u(x, y), v(x, y))):$

$$
u_{x}=v_{y} \quad \text { and } \quad v_{x}=-u_{y},
$$

in which case the derivative matrix of f is skew symmetric,

$$
f^{\prime}=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \quad \text { where } a=u_{x} \text { and } b=v_{x}
$$

- Input in coordinates, output in complex form $(z=x+i y, f(z))$:

$$
f_{x}=-i f_{y}
$$

in which case the derivative of f has two equivalent forms,

$$
f^{\prime}=f_{x}=-i f_{y}
$$

- Input and output both in complex form $(z, f(z))$: Define differential operators

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

Then f is annihilated by the second of these,

$$
\frac{\partial f}{\partial \bar{z}}=0
$$

and its derivative is given by the first,

$$
f^{\prime}=\frac{\partial f}{\partial z}
$$

One should apply whichever version of the Cauchy-Riemann equations best fit a given context.

The differential operators in the fourth version of the Cauchy-Riemann equations are suggested by the relations

$$
x=\frac{1}{2}(z+\bar{z}), \quad y=-\frac{i}{2}(z-\bar{z})
$$

and by the chain rule. The symbol-patterns are

$$
\frac{\partial}{\partial z}=\frac{\partial}{\partial x} \frac{\partial x}{\partial z}+\frac{\partial}{\partial y} \frac{\partial y}{\partial z}=\frac{\partial}{\partial x} \frac{1}{2}-\frac{\partial}{\partial y} \frac{i}{2}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)
$$

and similarly for $\partial / \partial \bar{z}$. These calculations are not meaningful analytically because z and \bar{z} are not independent real variables, but in practice they tend to work. For example, if

$$
f(z)=|z|^{2}=z \bar{z}
$$

then also $f(z)=x^{2}+y^{2}$, so that $\partial f / \partial \bar{z}=(2 x+2 i y) / 2=x+i y$. That is, exactly as one would expect,

$$
\frac{\partial f}{\partial \bar{z}}=z
$$

And this calculation shows that that f does not satisfy the Cauchy-Riemann equations except at $z=0$.

For a discussion of the Cauchy-Riemann equations and polar coordinates, see the related writeup "Geometry of the Cauchy-Riemann equations."

