COMPACTNESS AND UNIFORMITY

1. THE EXTREME VALUE THEOREM

Because the continuous image of a compact set is compact, a continuous complex-
valued function ¢ on a closed ball B is bounded, meaning that there exists some
positive real number ¢ such that

lo(2)] <c¢ forall z € B.
Example 1. For application of continuity implying boundedness, work in an
environment where
e () is a region in C,
e [:Q — C is a differentiable function,
e z is a point of 2 and B is a closed ball about z in €.

Define a function

¢: B —C,
where 1O - £(2)
e
=4 (. 7=
f'(z if { = 2.

This function is continuous because f is differentiable at z. Because B is compact, ¢
is bounded. Therefore, the integral of ¢ over a small circle around z in B is bounded
by a constant times the length of the circle, with the constant independent of the
circle. Taking smaller and smaller circles, the corresponding integrals go to 0. This
argument will prove Cauchy’s integral representation formula.

2. COMPACTNESS AND UNIFORM CONTINUITY

Let K be a compact subset of R, and let f : K — R™ be pointwise continuous.
Then f is uniformly continuous.

The topological proof of this fact proceeds as follows. Pointwise continuity says
that given € > 0, for each & € K there is a §, > 0 such that f takes the open
d5-ball about = into the open ¢/2-ball about f(x),

f(B(2,8,) N K) € B(f(x),2/2).
Cover K with a collection of open balls indexed by the points of K,
{B(x,0,/2) : x € K}.
Then by compactness, there is a finite subcover,
{B(zn,0s,/2) :n=1,...,N}.
Making reference to this finite subcover, let
0 =min{d,,/2,...,0.5/2}.

This is the global § required for uniform continuity.
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2 COMPACTNESS AND UNIFORMITY

To see that § works, consider any two points z,2’ € K such that |z — /| < 4.
The first point & must lie in some B(z,,, d,., /2) since these form a cover of K. That
is,

|z — x| < 05, /2.
Consequently,
|z — 2’| <|zp — 2|+ |2 — 2| <62, /248 <82, /2 + 0, /2= 0s,, .
The previous two displays give
|r —x,| <0p, and |z, —2'| < ds,,

and so
|f(x) = f(zn)| <e/2 and |[f(z,) - f(2")] <e/2,

giving the desired result,
[f () = f@)] < [f(2) = flen)| +[f(za) = f@))] <e.

However, this proof is admittedly a bit tricky. An alternative argument may be
more intuitive, although it is less general. First, in Fuclidean space, a subset K is
compact if and only if every sequence in K has a subsequence that converges in K.
This is essentially the Bolzano—Weierstrass Theorem. Granting this, we can prove
that continuity on any compact set is uniform by using sequences rather than an
open cover.

The proof proceeds by contradiction. As before, suppose that we have a compact
set K C R™ and a continuous function f : K — R™, but now suppose also that f
is not uniformly continuous on K. This means that for some £ > 0 there exists no
uniform ¢. So in particular no reciprocal positive integer 1/n will serve as § in the
definition of uniform continuity. Thus for each n € Z™ there exist points x,, and
Yn in K such that

(1) |€n —yn| < 1/n and |f(zn) — flyn)| > e.

Consider the sequences {z,} and {y,} in K. By the sequential characterization
of compactness, {x,} has a convergent subsequence that converges in K. Throw
away the rest of the x,,’s and throw away the y,,’s of corresponding index, reindex
the remaining terms of the two sequences, and now {z,} converges to some p € K.
Since |, — yn| < 1/n for each n (this remains true after the reindexing), {yn}
converges to p as well. So

limz, =p=limy,,

and now the continuity of f gives

lim f(zn) = f(p) = lim f(yn)-

This violates the second condition in (1) even though the first condition holds, and
so the proof by contradiction is complete.

Example 2. For an application of continuity on compact sets being uniform,
work in an environment where
e () is a region in C,
e f:0 — Cis a continuous function,
e 7 is a simple closed curve in §2 such that ) contains all of its interior,
e 2 is a point interior to v and B is a closed ball about z in the interior of ~.
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Then the product B X v is a compact set. Let k& be a fixed positive integer, and
define a function
o) Bx~y—C,

where

1 1
N TCH =
(', () = L

f(o‘i(g_z)k+1 if 2/ = z.

Here the superscript “(k)” does not denote a derivative, only a reminder that k plays
a role in the definition of the function. The point of this casewise-in-z’ definition,
which can look confusing at first, is that o(*) is continuous. Suggestive evidence of
the continuity is that for any fixed ¢, the definition of the z-derivative of 1/(¢ — z)*

says that
1 1
fim [ &EF —@aF ) 9 1 _ kK
2z 2 —z 0z \ (¢ — 2)* (¢ — z)kt1"

However, this is only suggestive evidence, because ( is held fixed in the display,
whereas we need to show that for any fixed ¢ on 7, ) (2/, () goes to ¥ (z,¢) as
(#/,¢") goes to (z,(¢). For 2/ = z this is clear. For 2z’ # z compute

‘P(k)(z”c/) = £(¢)- (C/fZ’):/ _ ;( —2)
N (k) il (O
= f(C ) (Z/ _ Z)(C/ _ Z/)k(C/ — Z)k
P (e (e

C=D T

and as (¢',2') goes to ((,z2), this goes to f(¢) - k/(¢ — 2)F! = p*)(2,¢). So
) is continuous, hence uniformly continuous because its domain is compact. In
particular, o*)(2’, ¢) is within any prescribed closeness to ¢*)(z, ¢) simultaneously
for all ¢ if 2’ is close enough to z. We will return to this example later in this
handout.

3. COMPACTNESS AND UNIFORM CONVERGENCE

Let K be a compact subset of C, and let {p,} : K — C be a sequence of func-
tions that converges pointwise to the function ¢ : K — C. Then the convergence
need not be uniform.

The standard counterexample here is the sequence of power functions on the
unit interval in the real numbers,

{en} 1 0,1] — R, pn(z)=2", n=1,2,3,...
whose limit function is discontinuous,

0 ifo<z<l,

p:[01] — R, w(m):{l if =1,

To see that the convergence of {¢,,} to ¢ is not uniform, reason that for any positive
integer n, the polynomial ¢, is continuous, and so for z close enough to 1, ¢, (z)
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is close to ¢, (1) = 1 and hence far from @(x) = 0. More specifically, let £ = 1/2,
and for any positive integer n let
z, = (1/2)4/7.
Then 0 < z,, < 1, and ¢, (z,) = 1/2, p(x,) = 0. That is,
lp(zn) — @n(2n)| > €,

and so the convergence is not uniform.

In general, any uniform limit of continuous functions must again be continuous,
so by this principle as well the convergence in our example cannot be uniform. We
will return to this point at the end of this writeup.

Although convergence on compact sets need not be uniform, in our context it
often is. For example, consider the partial sums of the geometric series on the
complex unit disk,

1— Zn+1

L a=01,2,...
1—z "

{p}:D—C, ulz) =3 sk =
k=0

and the full geometric series,

= 1
:D—C = k— .
@ . opx) =) 2 T
k=0
Compute that for any z € D,
Zn+1 |Z‘n+1
[9(2) —en()l = [T | < Topar

As z varies freely through some fixed compact subset K of D, its absolute value |z|
cannot exceed some maximum 7 = r that is strictly less than 1. Thus
7,.n+1
[02) — pnl2)] < T
The right side is independent of z (though it depends on K), and it goes to 0 as
n goes to co. This shows that the geometric series converges uniformly in z on
compact subsets of the unit disk.

for all z € K.

Example 3. For a similar example of uniform convergence on compact sets,
work in an environment where
e () is a region in C,
o f:Q — C is a differentiable (and hence continuous) function,
e 7 is a circle in €2 such that £ contains all of its interior,
e R is the radius of 7, a is the centerpoint of «, and z is any point interior

to 7.
Define a sequence of functions
~ (z—a)*
{on}:7—C, ¢n(() :f(C)ZW, n=0,12,...
k=0
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The claim is that {y,} converges to ¢ uniformly on . To see this, let n be a
positive integer and compute that for any ¢ € v,
r |z — al

lo(¢) — ()] < |f(<)|rnm where r =

The function |f| : ¥ — R>¢ is continuous and its domain + is compact, so its
image is compact, meaning that it takes a maximum M. Therefore, for all € v,

<1

lo(€) — on(Q)] < Mr"— " = Or" where C' > 0 is a constant.
R(1—r)
Since the right side is independent of { and it goes to 0 as n goes to oo, the
convergence is uniform in (, as claimed. This uniform convergence will justify
passing a sum through an integral to obtain the power series representation of an
analytic function.

A second way to treat this example is to observe that the functions ¢,, converge
to ¢ pointwise, and they are bounded by a constant that is independent of n. At
least in the case that v is piecewise C!, so that integration over ~ reduces to real
integration, either the bounded convergence theorem or the Lebesgue dominated
convergence theorem lets us assert that the integrals of the functions ¢, over y
tend to the integral of ¢ over 7y, because a constant function is integrable over a
curve of finite length.

Example 2, continued. For another example, return to the situation at the
end of previous section, where
e () is a region in C,
e f:Q — C is a continuous function,

e 7 is a simple closed curve in §2 such that Q contains all of its interior,
e 2 is a point interior to v and B is a closed ball about z in the interior of =,

and for any positive integer k we studied the function
<p(k) :Bxy—C,
given by

1 1
T F ~=aF ) .
N T e
(0 = L
f(C)-W if 2/ = z.
Take a sequence {z, } in the ball B that converges to z, with each z, distinct from z.
Define a corresponding sequence of functions of the one variable (,

{(P'SLk)}:fYHC7 Qogzk)(g)zsa(k)(ZmC)a n=123,...,
and the corresponding limit function, also of the one variable ¢ (reusing the nota-
tion p*) here),
ey —C, () =®(z,0).
In consequence of the discussion at the end of the previous section, the sequence
{gpglk)} converges uniformly in ¢ to p(®), because

W) = M) = 9™ (2, ) = ¢ (2,¢)
and the distance |(zp, () — (2,C)| = |(zn — 2,0)| = |2, — 2| in B X 7 is independent
of ¢. This makes the quantity in the display small, independently of ¢, by uniform
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continuity. This uniform convergence will justify passing a limit through an integral
to obtain Cauchy’s formula for the derivatives of an analytic function.

The uniform convergence can be checked directly by formula as well. The crux
is that by some algebra,

o Tk (C—2)" = (¢=2)" k
EErE P

0(¢ -

(S L (A L (L
¢ =2kt k
(

D) .

a (€ =2k —2)* (€ — 2kt
D D (S e (R k

- (¢ — z)k+1 - (C — z)k+1

=&)Y

:<<—;M4(§:5‘”)§:§5(§:5>i

7=0 =0
, 1 (-2
—<Z‘th—zw+%<—flpogg<<—”)'
Thus we have
k=1 j i
(k) (k) = . — : C_Z)
len () — (O = | £(O) - (2n Z)(gfz)’““(é 2)1—0122(42"

< clzp — 2|,

for a positive constant ¢ that is independent of ( as soon as z, is close enough to z.
That is, as n grows, @%k)(g) goes to ¥ (¢) at a rate independent of ¢. This is
the uniform convergence. The clutter of algebra here perhaps makes us appreciate
how uniform continuity, in consequence of compactness, lets us establish it without
having to work through this algebra.

A third way to treat the same example is to observe that because the two-variable
function p(*) is continuous on its compact domain, the one-variable functions go( )
converge to the one-variable function ¢*) pointwise, and they are bounded by a
constant that is independent of n. At least in the case that v is piecewise C!, so
that integration over - reduces to real integration, either the bounded convergence
theorem or the Lebesgue dominated convergence theorem lets us assert that the
integrals of the one-variable functions Lp%k) over 7 tend to the integral of the one-
variable function ¢®) over 7.

As mentioned above, any uniform limit of continuous functions must again be
continuous. That is,

Let S be a subset of C. Consider a sequence of continuous functions on S,
{@05@17@27"'} 58— C.
Suppose that the sequence converges uniformly on S to a limit function

p: 85— C.
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Then ¢ is also continuous.
This is shown by a three-epsilon argument, as follows. For any z,Z € S and
any n € N,

0(2) = ()] < |9(2) = en ()] + on(2) — n(2)] + on(2) — ©(2)].
Let € > 0 be given. Since {p,} converges to ¢ uniformly on S it follows that for
all large enough indices n, independently of z and Z,

[p(2) —on(2)] <& and  [pn(2) —p(2)] <e.
Fix any such index n, and fix the point z € S. Since y,, is continuous at z there
exists some § = d(e, z) > 0 such that

12— 2| <0 = |pn(2) — pn(2)] <e.
It follows from these considerations that
22—z <d = |p(Z) —p(z)| <e+e+e=3e

This completes the proof that ¢ is continuous.



