ISOGENY FROM SU(2) TO SO(3)

This writeup constructs a 2-to-1 epimorphism $\mathrm{SU}(2) \longrightarrow \mathrm{SO}(3)$, quickly demonstrating methods by example without full discussion. In general, a group that doubly covers an orthogonal group is called a spin group. See Paul Garrett's writeup

```
http://www-users.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf
```

for many more examples.

1. Unitary group and its Lie algebra

For the unitary group $U(2) \subset \mathrm{GL}_{2}(\mathbb{C})$, having Lie algebra $\mathfrak{u}(2) \subset \mathrm{M}_{2}(\mathbb{C})$, the condition

$$
1=\left(\overline{e^{t x}}\right)^{\top} e^{t x}=e^{t \bar{x}^{\top}} e^{t x} \quad \text { for } x \in \mathfrak{u}(2)
$$

differentiates at 0 to $0=\bar{x}^{\top}+x$; and conversely if $\bar{x}^{\top}=-x$ then

$$
\left(\overline{e^{t x}}\right)^{\top} e^{t x}=e^{t \bar{x}^{\top}} e^{t x}=e^{-t x} e^{t x}=1
$$

Thus the Lie algebra consists of the skew hermitian matrices. Here $U(2)$ and $\mathfrak{u}(2)$ are a real Lie group and Lie algebra notwithstanding their complex entries. Their shared real dimension is 4 . The Lie algebra $\mathfrak{s u}(2)$ of the special unitary group $\mathrm{SU}(2)$ carries the additional condition that the trace vanishes,

$$
\mathfrak{s u}(2)=\left\{x \in \mathrm{M}_{2}(\mathbb{C}): \bar{x}^{\top}=-x, \operatorname{tr} x=0\right\} .
$$

This reduces its dimension to 3 , also the manifold dimension of $\mathrm{SU}(2)$. Here the argument is that the condition det $e^{t x}=1$ is $e^{t \operatorname{tr} x}=1$, which differentiates at $t=0$ to $\operatorname{tr} x=0$; and conversely if $\operatorname{tr} x=0$ then $\operatorname{det} e^{t x}=e^{t \operatorname{tr} x}=e^{0}=1$.

The $\mathfrak{s u}(2)$ conditions $\bar{x}^{\top}=-x$ and $\operatorname{tr} x=0$ are preserved under addition, real scaling, and the Lie bracket. For example,

$$
(\overline{r x})^{\top}=\bar{r} \bar{x}^{\top}=-r x \quad \text { for real } r,
$$

and

$$
(\overline{x y-y x})^{\top}=\bar{y}^{\top} \bar{x}^{\top}-\bar{x}^{\top} \bar{y}^{\top}=(-y)(-x)-(-x)(-y)=y x-x y=-(x y-y x)
$$

2. Inner Product, Invariance

A real symmetric bilinear inner product on $\mathfrak{s u}(2)$ is

$$
\langle\cdot, \cdot\rangle: \mathfrak{s u}(2) \times \mathfrak{s u}(2) \longrightarrow \mathbb{R}, \quad\langle x, y\rangle=\operatorname{Re}(\operatorname{tr}(x y))
$$

The group $\mathrm{SU}(2)$ acts on the algebra $\mathfrak{s u}(2)$ by conjugation,

$$
g \cdot x=g x g^{-1}
$$

and this action preserves the inner product,

$$
\langle g \cdot x, g \cdot y\rangle=\langle x, y\rangle .
$$

Indeed, to see that $g \cdot x$ again lies in $\mathfrak{s u}(2)$ for all $g \in \mathrm{SU}(2)$ and $x \in \mathfrak{s u}(2)$, note that because g and $e^{\mathbb{R} x}$ and g^{-1} lie in $\mathrm{SU}(2)$, also

$$
e^{\mathbb{R} g x g^{-1}}=g e^{\mathbb{R} x} g_{1}^{-1} \quad \text { lies in } \mathrm{SU}(2)
$$

and to see that the action preserves the inner product, compute that

$$
\langle g \cdot x, g \cdot y\rangle=\operatorname{Re}\left(\operatorname{tr}\left(g x g^{-1} g y g^{-1}\right)\right)=\operatorname{Re}(\operatorname{tr}(x y))=\langle x, y\rangle .
$$

Note that the results in this section rely only on general Lie group and Lie algebra properties, not on any particulars of the specific Lie group $\mathrm{SU}(2)$ and its Lie algebra $\mathfrak{s u}(2)$.

3. Orthogonal Basis, Group Action, Isogeny

The $\mathfrak{s u}(2)$-basis

$$
x_{1}=\left[\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right], \quad x_{2}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right], \quad x_{3}=\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right]
$$

is orthogonal under the inner product, with $\left\langle x_{i}, x_{i}\right\rangle=-2$ for $i=1,2,3$. For example,

$$
\left\langle x_{1}, x_{1}\right\rangle=\operatorname{Re}\left(\operatorname{tr}\left(\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\right)=-2, \quad\left\langle x_{2}, x_{3}\right\rangle=\operatorname{Re}\left(\operatorname{tr}\left(\left[\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right]\right)\right)=0 .
$$

Thus we have the 3×3 matrix

$$
\left[\left\langle x_{i}, x_{j}\right\rangle\right]=-2 I_{3} .
$$

The action of any group element

$$
g=\left[\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right]=\left[\begin{array}{cc}
\alpha_{1}+i \alpha_{2} & \beta_{1}+i \beta_{2} \\
-\beta_{1}+i \beta_{2} & \alpha_{1}-i \alpha_{2}
\end{array}\right] \in \mathrm{SU}(2)
$$

on the basis elements is a matter of direct computation, albeit a bit tedious,

$$
\begin{aligned}
& g \cdot x_{1}=\left(\alpha_{1}^{2}+\alpha_{2}^{2}-\beta_{1}^{2}-\beta_{2}^{2}\right) x_{1}+2\left(\alpha_{2} \beta_{1}+\alpha_{1} \beta_{2}\right) x_{2}+2\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{1}\right) x_{3} \\
& g \cdot x_{2}=2\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) x_{1}+\left(\alpha_{1}^{2}-\alpha_{2}^{2}+\beta_{1}^{2}-\beta_{2}^{2}\right) x_{2}+2\left(\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}\right) x_{3} \\
& g \cdot x_{3}=2\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) x_{1}+2\left(-\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}\right) x_{2}+\left(\alpha_{1}^{2}-\alpha_{2}^{2}-\beta_{1}^{2}+\beta_{2}^{2}\right) x_{3} .
\end{aligned}
$$

This shows that the map from $\mathrm{SU}(2)$ to the special orthogonal group $\mathrm{SO}(3)$ is the quadratic map

$$
\varphi: g \longmapsto\left[\begin{array}{ccc}
\alpha_{1}^{2}+\alpha_{2}^{2}-\beta_{1}^{2}-\beta_{2}^{2} & 2\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) & 2\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \\
2\left(\alpha_{2} \beta_{1}+\alpha_{1} \beta_{2}\right) & \alpha_{1}^{2}-\alpha_{2}^{2}+\beta_{1}^{2}-\beta_{2}^{2} & 2\left(-\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}\right) \\
2\left(-\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) & 2\left(\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}\right) & \alpha_{1}^{2}-\alpha_{2}^{2}-\beta_{1}^{2}+\beta_{2}^{2}
\end{array}\right]
$$

Let the matrix in the previous display be denoted A_{g}. To argue that A_{g} is orthogonal, introduce the map that converts elements of $\mathfrak{s u}(2)$ into \mathbb{R}^{3}-vectors,

$$
v: \mathfrak{s u}(2) \xrightarrow{\sim} \mathbb{R}^{3}, \quad v\left(\sum_{i=1}^{3} c_{i} x_{i}\right)=\sum_{i=1}^{3} c_{i} e_{i}, \quad\left(e_{i} \text { the standard basis vectors }\right) .
$$

Because A_{g} is the matrix of of the g-action, we have a commutative diagram

which is to say,

$$
\begin{equation*}
A_{g} v(x)=v(g \cdot x), \quad g \in \mathrm{SU}(2), x \in \mathfrak{s u}(2) \tag{1}
\end{equation*}
$$

And note that by our inner product calculations on the $\mathfrak{s u}(2)$ basis elements,

$$
\begin{equation*}
\left\langle x, x^{\prime}\right\rangle_{\mathfrak{s u}(2)}=-2\left\langle v(x), v\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{3}}, \quad x, x^{\prime} \in \mathfrak{s u}(2) \tag{2}
\end{equation*}
$$

Now compute for any $g \in \mathrm{SU}(2)$ and any $x, x^{\prime} \in \mathfrak{s u}(2)$, recalling for the third equality that the $\mathrm{SU}(2)$ action preserves the $\mathfrak{s u}(2)$ inner product,

$$
\begin{aligned}
\left\langle A_{g} v(x), A_{g} v\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{3}} & =\left\langle v(g \cdot x), v\left(g \cdot x^{\prime}\right)\right\rangle_{\mathbb{R}^{3}} & & \text { by (1) } \\
& =(-1 / 2)\left\langle g \cdot x, g \cdot x^{\prime}\right\rangle_{\mathfrak{s u}(2)} & & \text { by }(2) \\
& =(-1 / 2)\left\langle x, x^{\prime}\right\rangle_{\mathfrak{s u}(2)} & & \text { as just recalled } \\
& =\left\langle v(x), v\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{3}} & & \text { by }(2) \text { again. }
\end{aligned}
$$

This shows that A_{g} is orthogonal.
The map $g \mapsto A_{g}$ is innately a homomorphism, because the action property $\left(g g^{\prime}\right) \cdot x=g \cdot\left(g^{\prime} \cdot x\right)$ for $g, g^{\prime} \in \mathrm{SU}(2)$ and $x \in \mathfrak{s u}(2)$ combines with the fact that matrix multiplication is compatible with linear map composition to give $A_{g g^{\prime}}=A_{g} A_{g^{\prime}}$.

To determine the kernel of the map $g \mapsto A_{g}$, note that the diagonal conditions

$$
\alpha_{1}^{2}+\alpha_{2}^{2}-\beta_{1}^{2}-\beta_{2}^{2}=\alpha_{1}^{2}-\alpha_{2}^{2}+\beta_{1}^{2}-\beta_{2}^{2}=\alpha_{1}^{2}-\alpha_{2}^{2}-\beta_{1}^{2}+\beta_{2}^{2}=1
$$

are $\alpha_{1}^{2}-1=\alpha_{2}^{2}=\beta_{1}^{2}=\beta_{2}^{2}$. Now the (1,2)-entry condition $\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}=0$ is $\pm \beta_{2}^{2}= \pm \sqrt{\beta_{2}^{2}+1} \beta_{2}$; if $\beta_{2} \neq 0$ then canceling β_{2} and then squaring both sides gives the impossible condition $\beta_{2}^{2}=\beta_{2}^{2}+1$, so $\beta_{2}=0$. This forces $g= \pm 1_{2}$. Conversely, if $g= \pm 1$ then $A_{g}=1$. In sum, the map has kernel is $\pm 1_{2}$.

Because the manifold dimension 3 of $\mathrm{O}(3)$ matches that of the connected group $\mathrm{SU}(2)$, the map $g \mapsto A_{g}$ surjects to the connected component $\mathrm{SO}(3)$ of its codomain.

