
ISOGENY FROM SU(2) TO SO(3)

This writeup constructs a 2-to-1 epimorphism SU(2) −→ SO(3), quickly demon-
strating methods by example without full discussion. In general, a group that dou-
bly covers an orthogonal group is called a spin group . See Paul Garrett’s writeup

http://www-users.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf

for many more examples.

1. Unitary group and its Lie algebra

For the unitary group U(2) ⊂ GL2(C), having Lie algebra u(2) ⊂ M2(C), the
condition

1 = (etx)Tetx = etx
T

etx for x ∈ u(2)

differentiates at 0 to 0 = xT + x; and conversely if xT = −x then

(etx)Tetx = etx
T

etx = e−txetx = 1.

Thus the Lie algebra consists of the skew hermitian matrices. Here U(2) and u(2)
are a real Lie group and Lie algebra notwithstanding their complex entries. Their
shared real dimension is 4. The Lie algebra su(2) of the special unitary group SU(2)
carries the additional condition that the trace vanishes,

su(2) = {x ∈ M2(C) : xT = −x, trx = 0 }.
This reduces its dimension to 3, also the manifold dimension of SU(2). Here the
argument is that the condition det etx = 1 is et tr x = 1, which differentiates at t = 0
to trx = 0; and conversely if trx = 0 then det etx = et tr x = e0 = 1.

The su(2) conditions xT = −x and trx = 0 are preserved under addition, real
scaling, and the Lie bracket. For example,

(rx)T = r xT = −r x for real r,

and

(xy − yx)T = yTxT − xTyT = (−y)(−x)− (−x)(−y) = yx− xy = −(xy − yx).

2. Inner Product, Invariance

A real symmetric bilinear inner product on su(2) is

〈·, ·〉 : su(2)× su(2) −→ R, 〈x, y〉 = Re(tr (xy)).

The group SU(2) acts on the algebra su(2) by conjugation,

g · x = gxg−1,

and this action preserves the inner product,

〈g · x, g · y〉 = 〈x, y〉.
Indeed, to see that g · x again lies in su(2) for all g ∈ SU(2) and x ∈ su(2), note
that because g and eRx and g−1 lie in SU(2), also

eRgxg
−1

= geRxg−1 lies in SU(2),
1
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and to see that the action preserves the inner product, compute that

〈g · x, g · y〉 = Re(tr (gxg−1gyg−1)) = Re(tr (xy)) = 〈x, y〉.
Note that the results in this section rely only on general Lie group and Lie algebra
properties, not on any particulars of the specific Lie group SU(2) and its Lie algebra
su(2).

3. Orthogonal Basis, Group Action, Isogeny

The su(2)-basis

x1 =

[
i 0
0 −i

]
, x2 =

[
0 1
−1 0

]
, x3 =

[
0 i
i 0

]
is orthogonal under the inner product, with 〈xi, xi〉 = −2 for i = 1, 2, 3. For
example,

〈x1, x1〉 = Re(tr (

[
−1 0

0 −1

]
)) = −2, 〈x2, x3〉 = Re(tr (

[
i 0
0 −i

]
)) = 0.

Thus we have the 3× 3 matrix

[〈xi, xj〉] = −2I3.

The action of any group element

g =

[
a b

−b a

]
=

[
α1 + iα2 β1 + iβ2
−β1 + iβ2 α1 − iα2

]
∈ SU(2)

on the basis elements is a matter of direct computation, albeit a bit tedious,

g · x1 = (α2
1 + α2

2 − β2
1 − β2

2)x1 + 2(α2β1 + α1β2)x2 + 2(α2β2 − α1β1)x3

g · x2 = 2(α2β1 − α1β2)x1 + (α2
1 − α2

2 + β2
1 − β2

2)x2 + 2(α1α2 + β1β2)x3

g · x3 = 2(α1β1 + α2β2)x1 + 2(−α1α2 + β1β2)x2 + (α2
1 − α2

2 − β2
1 + β2

2)x3.

This shows that the map from SU(2) to the special orthogonal group SO(3) is the
quadratic map

ϕ : g 7−→

α2
1 + α2

2 − β2
1 − β2

2 2(α2β1 − α1β2) 2(α1β1 + α2β2)
2(α2β1 + α1β2) α2

1 − α2
2 + β2

1 − β2
2 2(−α1α2 + β1β2)

2(−α1β1 + α2β2) 2(α1α2 + β1β2) α2
1 − α2

2 − β2
1 + β2

2

 .
Let the matrix in the previous display be denoted Ag. To argue that Ag is orthog-
onal, introduce the map that converts elements of su(2) into R3-vectors,

v : su(2)
∼−→ R3, v(

3∑
i=1

cixi) =

3∑
i=1

ciei, (ei the standard basis vectors).

Because Ag is the matrix of of the g-action, we have a commutative diagram

su(2)

v

��

g
// su(2)

v

��

R3
Ag

// R3

which is to say,

(1) Agv(x) = v(g · x), g ∈ SU(2), x ∈ su(2).
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And note that by our inner product calculations on the su(2) basis elements,

(2) 〈x, x′〉su(2) = −2〈v(x), v(x′)〉R3 , x, x′ ∈ su(2).

Now compute for any g ∈ SU(2) and any x, x′ ∈ su(2), recalling for the third
equality that the SU(2) action preserves the su(2) inner product,

〈Agv(x), Agv(x′)〉R3 = 〈v(g · x), v(g · x′)〉R3 by (1)

= (−1/2)〈g · x, g · x′〉su(2) by (2)

= (−1/2)〈x, x′〉su(2) as just recalled

= 〈v(x), v(x′)〉R3 by (2) again.

This shows that Ag is orthogonal.
The map g 7→ Ag is innately a homomorphism, because the action property

(gg′)·x = g·(g′·x) for g, g′ ∈ SU(2) and x ∈ su(2) combines with the fact that matrix
multiplication is compatible with linear map composition to give Agg′ = AgAg′ .

To determine the kernel of the map g 7→ Ag, note that the diagonal conditions

α2
1 + α2

2 − β2
1 − β2

2 = α2
1 − α2

2 + β2
1 − β2

2 = α2
1 − α2

2 − β2
1 + β2

2 = 1

are α2
1 − 1 = α2

2 = β2
1 = β2

2 . Now the (1, 2)-entry condition α2β1 − α1β2 = 0 is

±β2
2 = ±

√
β2
2 + 1β2; if β2 6= 0 then canceling β2 and then squaring both sides gives

the impossible condition β2
2 = β2

2 + 1, so β2 = 0. This forces g = ±12. Conversely,
if g = ±1 then Ag = 1. In sum, the map has kernel is ±12.

Because the manifold dimension 3 of O(3) matches that of the connected group
SU(2), the map g 7→ Ag surjects to the connected component SO(3) of its codomain.


