1. Rings And Ideals

Definition. A ring, R, is a non-empty set with two binary operations, addition (denoted +), and multiplication, (denoted \cdot or with the \cdot omitted), such that the following hold:
(1) + and \cdot are both commutative and associative;
(2) Both + and \cdot have identities, denoted 0 and 1 respectively.
(3) Additive inverses exist.
(4) Multiplication distributes over addition.

In general, multiplication in a ring need not be commutative nor have an identity, but for our purposes it always will.
Example. The set of integers, \mathbb{Z}, with standard addition and multiplication is a ring.
NOTE: In the sequel, R will denote a ring.
Definition. A subset $I \subseteq R$ is an ideal if the following hold:
(1) $a, b \in I \Rightarrow a+b \in I$.
(2) $a \in I, b \in R \Rightarrow a \cdot b \in I$.
(3) $0 \in I$.

Example. The sets $\{0\}$ and R are ideals in R.
Exercise. Show the set of even integers in \mathbb{Z} is an ideal.
Exercise. Show that the intersection of ideals is an ideal.
Definition. For $X \subseteq R$, the ideal generated by X, denoted (X), is the smallest ideal in R containing X. An ideal generated by a finite set $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is called finitely generated and is generally written $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. An ideal generated by a single element is called a principal ideal.
Exercise. For $X \subseteq R$, show $(X)=\left\{\sum_{i=1}^{n} r_{i} x_{i}: x_{i} \in X, r_{i} \in R, n \in \mathbb{Z}_{\geq 1}\right\}$.
Definition. For I and J ideals in R, let:
(1) $I+J=\{i+j: i \in I, j \in J\}$.
(2) $I J=(\{i j: i \in I, j \in J\})$.

Exercise. Show that if I and J are ideals, then so is $I+J$.
Exercise. Let $I=(X), J=(Y)$. Show that $I J=(\{x \cdot y: x \in X, y \in Y\})$
Exercise. Give an example of a ring R and two ideals $I, J \subseteq R$ such that $\{i j: i \in I, j \in J\}$ is not an ideal.
Definition. Elements $a, b \in R$ are zero-divisors if they are non-zero but $a b=0$. If R has no zero-divisors and $0 \neq 1$, then it is an (integral) domain.
Exercise. Show that $\mathbb{Z} / 4 \mathbb{Z}$ is not a domain.
Definition. A domain R in which all ideals are principal ideals is called a principal ideal domain or PID.

Exercise. Show that \mathbb{Z} is a PID. (Hint: use the Euclidean algorithm.)
Definition. An ideal $I \subseteq R$ is prime if $I \neq R$ and $a b \in I \Rightarrow a \in I$ or $b \in I$.
Exercise. Show that, for $(n) \subseteq \mathbb{Z}$, the ideal (n) is prime if and only if n is a prime number.

Definition. A proper ideal $M \subsetneq R$ is maximal if for every ideal $I \supseteq M$, either $I=M$ or $I=R$. Note that R, itself, is not considered a maximal ideal.
Exercise. Show that every maximal ideal is prime.

2. Homomorphisms

Definition. For rings R, S, a mapping $\varphi: R \rightarrow S$ is a ring homomorphism if the following properties hold:
(1) $\varphi(r) \cdot \varphi(s)=\varphi(r \cdot s)$ for all $a, b \in R$.
(2) $\varphi(r)+\varphi(s)=\varphi(r+s)$ for all $a, b \in R$.
(3) $\varphi(1)=1$.

Definition. A ring homomorphism is a ring isomorphism if it is bijective.
Exercise. Show that the inverse of a ring isomorphism is a ring homomorphism and therefore also a ring isomorphism.
Definition. Let $\varphi: R \rightarrow S$ be a ring homomorphism. The kernel of φ is the set

$$
\operatorname{ker}(\varphi)=\{r \in R: \varphi(r)=0\}
$$

The image of φ is the set

$$
\operatorname{im}(\varphi)=\varphi(R)=\{s \in S: s=\varphi(r) \text { for some } r \in R\}
$$

Exercise. Show that the kernel of ring homomorphism $\varphi: R \rightarrow S$ is an ideal in R.

3. Quotient Rings

Definition. A binary relation, \sim, on a set S is an equivalence relation if it is reflexive, symmetric, and transitive. That is, for all $a, b, c \in S$:
(1) $a \sim a$.
(2) $a \sim b \Rightarrow b \sim a$.
(3) $a \sim b, b \sim c \Rightarrow a \sim c$.

Definition. An equivalence relation \sim on S partitions S into disjoint subsets of the form $[a]=\{s \in S: s \sim a\}$, called equivalence classes. The subset [a], frequently abbreviated to a is called the equivalence class of a.
Exercise. Show that for any ideal $I \subseteq R, \sim$ defined by $(a \sim b) \Longleftrightarrow(a-b) \in I$ is an equivalence relation. Here $a-b=a+(-b)$, where $-b$ is the additive inverse of b.
Definition. For a ring R and an equivalence relation \sim on R, the quotient R / \sim, pronounced " $R \bmod \sim$ ", is the set of all equivalence classes of elements of R. For an ideal $I \subseteq R$, the quotient ring R / I is R / \sim where \sim is defined by $(a \sim b) \Longleftrightarrow(a-b) \in I$.

Exercise. For an ideal $I \subseteq R$, show that R / I is a ring under the operations $[a]+[b]=[a+b]$ and $[a] \cdot[b]=[a \cdot b]$. Note that you will need to show that these operations are well-defined.
Exercise. An ideal $I \subseteq R$ is prime if and only if R / I is a domain.
Definition. A field, k, is a ring such that for all non-zero $a \in k$ there exists a multiplicative inverse of a in k, and $0 \neq 1$.
Example. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, and $\mathbb{Z} / p \mathbb{Z}$ for p a prime are fields. \mathbb{Z} is not a field.
Exercise. An ideal $I \subseteq R$ is maximal if and only if R / I is a field.
Exercise. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Define $\psi: R / \operatorname{ker}(\varphi) \rightarrow S$ by $\psi(r)=\varphi(r)$ for all $r \in R / \operatorname{ker}(\varphi)$. Show ψ is injective.

4. Polynomial Rings

Definition. A polynomial over R is an expression of the form

$$
p=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}
$$

where each coefficient, a_{i}, is an element of R and where x is a formal symbol. The degree of p is d provided $a_{d} \neq 0$. The collection of all polynomials is the ring of polynomials over R, denoted $R[x]$. The ring structure is given by

$$
\left(\sum_{i} a_{i} x^{i}\right)+\left(\sum_{i} b_{i} x^{i}\right)=\sum_{i}\left(a_{i}+b_{i}\right) x^{i}
$$

and

$$
\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{i} b_{i} x^{i}\right)=\sum_{k}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}
$$

Define the polynomial ring in n variables, x_{1}, \ldots, x_{n}, by $R\left[x_{1}, \ldots, x_{n}\right]=R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$.

Theorem 4.1. Let $f, g \in k[x]$, where k is a field and $g \neq 0$. Then there exist $q, r \in k[x]$, where $\operatorname{deg}(r)<\operatorname{deg}(g)$ such that $f=q g+r$.

Exercise. For any field k, the polynomial ring $k[x]$ is a principal ideal domain. (Hint: given a non-zero ideal $I \subseteq k[x]$, choose a non-zero element $f \in I$ of least degree. Using the quotient-remainder theorem, just cited, show that $I=(f)$.)
Exercise. Let $f \in k[x]$ and suppose $f(a)=0$ for some $a \in k$. Show that $x-a$ divides f, i.e., there exists $q \in k[x]$ such that $f=(x-a) q$. Use this to show that a non-zero polynomial $f \in k[x]$ has at most $\operatorname{deg}(f)$ zeroes.
Definition. A field k is algebraically closed if every polynomial $f \in k[x]$ of degree at least 1 has a zero in k, i.e., there exists $a \in k$ such that $f(a)=0$.
Example. \mathbb{R} and $\mathbb{Z} / p \mathbb{Z}$ for p prime are not algebraically closed. \mathbb{C} is algebraically closed.

5. Exact Sequences

Definition. A sequence of rings, $\left\{R_{i}\right\}$, and ring homomorphisms $\left\{\varphi_{i}: R_{i} \rightarrow R_{i+1}\right\}$, is exact at R_{i} if $\operatorname{im}\left(\varphi_{i-1}\right)=\operatorname{ker}\left(\varphi_{i}\right)$. The sequence is exact if it is exact at every R_{i} except for the first and last.
Definition. A short exact sequence is an exact sequence with only 5 rings, beginning and ending with the trivial ring, i.e., the one with only a single element, denoted 0 :

$$
0 \longrightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \longrightarrow 0
$$

Exercise. Show the following facts about a short exact sequence as above:
(1) φ is injective.
(2) ψ is surjective.
(3) C is isomorphic to B / A.

Exercise. Short exact sequences can be defined identically for vector spaces and linear mappings, instead of rings and ring homomorphisms. Given a short exact sequence of vector spaces:

$$
0 \longrightarrow V^{\prime \prime} \longrightarrow V \longrightarrow V^{\prime} \longrightarrow 0
$$

show $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)+\operatorname{dim}\left(V^{\prime \prime}\right)$.

